Skip to content

Latest commit

 

History

History

graft_kd

Folders and files

NameName
Last commit message
Last commit date

parent directory

..
 
 
 
 

Grafting for Few-shot Distillation

Quick Start

1. Preparation

Dataset Preparation

To download and build datasets (CIFAR10 and CIFAR100) for few-shot distillation, run this command:

python train_graft_kd.py --build_dataset True

Dataset will be automatically downloaded to ./data/torchdata

Pre-trained Teacher Models

You can download pretrained teacher models here (Github Releases):

2. Knowledge Distillation

To train the model(s) in the paper, run this command:

# ----------- Run on CIFAR10 -----------
python train_graft_kd.py --dataset CIFAR10 # Training [1~10, 20, 50]-Shot Distillation 

# ----------- Run on CIFAR100 -----------
python train_graft_kd.py --dataset CIFAR100 # Training [1~10, 20, 50]-Shot Distillation 

Note: put the pre-trained teacher models in the directory: ./ckpt/teacher/

3.Results

N-Shot Accuracy on CIFAR10 (%) Accuracy on CIFAR100 (%)
1 90.74 ± 0.49 64.22 ± 0.17
2 92.60 ± 0.06 66.51 ± 0.11
3 92.70 ± 0.07 67.35 ± 0.10
4 92.77 ± 0.04 67.69 ± 0.03
5 92.88 ± 0.07 68.16 ± 0.20
6 92.84 ± 0.08 68.38 ± 0.11
7 92.77 ± 0.05 68.46 ± 0.10
8 92.83 ± 0.06 68.78 ± 0.22
9 92.88 ± 0.05 68.77 ± 0.10
10 92.89 ± 0.06 68.86 ± 0.03
20 92.78 ± 0.09 69.04 ± 0.08
50 92.76 ± 0.09 69.06 ± 0.10

Citation

@inproceedings{shen2021progressive,
  title={Progressive network grafting for few-shot knowledge distillation},
  author={Shen, Chengchao and Wang, Xinchao and Yin, Youtan and Song, Jie and Luo, Sihui and Song, Mingli},
  booktitle={Proceedings of the AAAI Conference on Artificial Intelligence},
  volume={35},
  number={3},
  pages={2541--2549},
  year={2021}
}