To download the Waymo dataset, you need to register an account at Waymo Open Dataset. You also need to install gcloud SDK and authenticate your account. Please refer to this page for more details.
Once you've registered and installed the gcloud SDK, create a directory to house the raw data:
# Create the data directory or create a symbolic link to the data directory
mkdir -p ./data/waymo/raw
mkdir -p ./data/waymo/processed
For the Waymo Open Dataset, we first organize the scene names alphabetically and store them in data/waymo_train_list.txt
. The scene index is then determined by the line number minus one.
For example, to obtain the 23th, 114th, and 788th scenes from the Waymo Open Dataset, execute:
python datasets/waymo/waymo_download.py \
--target_dir ./data/waymo/raw \
--scene_ids 23 114 327 621 703 172 552 788
You can also provide a split file (e.g. data/waymo_example_scenes.txt
) to download a batch of scenes at once:
python datasets/waymo/waymo_download.py \
--target_dir ./data/waymo/raw \
--split_file data/waymo_example_scenes.txt
If you wish to run experiments on different scenes, please specify your own list of scenes.
If this script doesn't work due to network issues, also consider manual download:
Download the scene flow version of Waymo.
Note: Ensure you're downloading the scene flow version to avoid errors.
After downloading the raw dataset, you'll need to preprocess this compressed data to extract and organize various components.
pip install waymo-open-dataset-tf-2-11-0==1.6.0
To preprocess specific scenes of the dataset, use the following command:
# export PYTHONPATH=\path\to\project
python datasets/preprocess.py \
--data_root data/waymo/raw/ \
--target_dir data/waymo/processed \
--dataset waymo \
--split training \
--scene_ids 23 114 327 621 703 172 552 788 \
--workers 8 \
--process_keys images lidar calib pose dynamic_masks objects
Alternatively, preprocess a batch of scenes by providing the split file:
# export PYTHONPATH=\path\to\project
python datasets/preprocess.py \
--data_root data/waymo/raw/ \
--target_dir data/waymo/processed \
--dataset waymo \
--split training \
--split_file data/waymo_example_scenes.txt \
--workers 8 \
--process_keys images lidar calib pose dynamic_masks objects
The extracted data will be stored in the data/waymo/processed
directory.
To generate:
- sky masks (required)
- fine dynamic masks (optional)
Follow these steps:
mmcv-full=1.2.7
, which relies on pytorch=1.8
(pytorch<1.9). Hence, a seperate conda env is required.
#-- Set conda env
conda create -n segformer python=3.8
conda activate segformer
# conda install pytorch==1.8.1 torchvision==0.9.1 torchaudio==0.8.1 cudatoolkit=11.3 -c pytorch -c conda-forge
pip install torch==1.8.1+cu111 torchvision==0.9.1+cu111 torchaudio==0.8.1 -f https://download.pytorch.org/whl/torch_stable.html
#-- Install mmcv-full
pip install timm==0.3.2 pylint debugpy opencv-python-headless attrs ipython tqdm imageio scikit-image omegaconf
pip install mmcv-full==1.2.7 --no-cache-dir
#-- Clone and install segformer
git clone https://github.com/NVlabs/SegFormer
cd SegFormer
pip install .
Download the pretrained model segformer.b5.1024x1024.city.160k.pth
from the google_drive / one_drive links in https://github.com/NVlabs/SegFormer#evaluation .
Remember the location where you download into, and pass it to the script in the next step with --checkpoint
.
conda activate segformer
segformer_path=/pathtosegformer
python datasets/tools/extract_masks.py \
--data_root data/waymo/processed/training \
--segformer_path=$segformer_path \
--checkpoint=$segformer_path/pretrained/segformer.b5.1024x1024.city.160k.pth \
--split_file data/waymo_example_scenes.txt \
--process_dynamic_mask
Replace /pathtosegformer
with the actual path to your Segformer installation.
Note: The --process_dynamic_mask
flag is included to process fine dynamic masks along with sky masks.
This process will extract the required masks from your processed data.
To utilize the SMPL-Gaussian to model pedestrians, please first download the SMPL models.
- Download SMPL v1.1 (
SMPL_python_v.1.1.0.zip
) from the SMPL official website - Move
SMPL_python_v.1.1.0/smpl/models/basicmodel_neutral_lbs_10_207_0_v1.1.0.pkl
toPROJECT_ROOT/smpl_models/SMPL_NEUTRAL.pkl
SMPL-Nodes (SMPL-Gaussian Representation) requires Human Body Pose Sequences of pedestrians. We've developed a human body pose processing pipeline for in-the-wild driving data to generate this information. There are two ways to obtain these data:
We have uploaded preprocessed human pose data for a subset of Waymo scenes to Google Drive. You can download and unzip these files without installing any additional environment.
# https://drive.google.com/file/d/1QrtMrPAQhfSABpfgQWJZA2o_DDamL_7_/view?usp=drive_link
# filename: waymo_preprocess_humanpose.zip
cd data
gdown 1QrtMrPAQhfSABpfgQWJZA2o_DDamL_7_
unzip waymo_preprocess_humanpose.zip
rm waymo_preprocess_humanpose.zip
To process human body poses for other Waymo scenes or to run the processing pipeline yourself, follow the instructions in our Human Pose Processing Guide.
After completing all preprocessing steps, the project files should be organized according to the following structure:
ProjectPath/data/
└── waymo/
├── raw/
│ ├── segment-454855130179746819_4580_000_4600_000_with_camera_labels.tfrecord
│ └── ...
└── processed/
└──training/
├── 001/
│ ├──images/ # Images: {timestep:03d}_{cam_id}.jpg
│ ├──lidar/ # LiDAR data: {timestep:03d}.bin
│ ├──ego_pose/ # Ego vehicle poses: {timestep:03d}.txt
│ ├──extrinsics/ # Camera extrinsics: {cam_id}.txt
│ ├──intrinsics/ # Camera intrinsics: {cam_id}.txt
│ ├──sky_masks/ # Sky masks: {timestep:03d}_{cam_id}.png
│ ├──dynamic_masks/ # Coarse dynamic masks: category/{timestep:03d}_{cam_id}.png
│ ├──fine_dynamic_masks/ # (Optional) Fine dynamic masks: category/{timestep:03d}_{cam_id}.png
│ ├──instances/ # Instances' bounding boxes information
│ └──humanpose/ # Preprocessed human body pose: smpl.pkl
├── 002/
├── ...