-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathevaluate.py
187 lines (156 loc) · 5.73 KB
/
evaluate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
import os
import random
import pprint
from six.moves import range
import torch
import options as options
from dataloader import VisDialDataset
from dataloader_human_study import VisDialDatasetHumanStudy
from eval_utils.dialog_generate import dialogDump
from eval_utils.human_study_data import dumpData
from eval_utils.rank_answerer import rankABot
from eval_utils.rank_questioner import rankQBot, rankQABots
from utils import utilities as utils
from utils.visualize import VisdomVisualize
# read the command line options
params = options.readCommandLine()
random.seed(params['randomSeed'])
torch.manual_seed(params['randomSeed'])
if params['useGPU']:
torch.cuda.manual_seed_all(params['randomSeed'])
# setup dataloader
dlparams = params.copy()
dlparams['useIm'] = True
dlparams['useHistory'] = True
dlparams['numRounds'] = 10
splits = ['train','val']
# splits = ['train','val', 'test']
dataset = VisDialDataset(dlparams, splits)
# Transferring dataset parameters
transfer = ['vocabSize', 'numOptions', 'numRounds']
for key in transfer:
if hasattr(dataset, key):
params[key] = getattr(dataset, key)
if 'numRounds' not in params:
params['numRounds'] = 10
# Always load checkpoint parameters with continue flag
params['continue'] = True
excludeParams = ['batchSize', 'visdomEnv', 'startFrom', 'qstartFrom', 'trainMode', \
'evalModeList', 'evalSplit', 'inputImgRCNN', 'inputQues', 'inputJson', 'evalTitle', 'beamSize', \
'enableVisdom', 'visdomServer', 'visdomServerPort','savePath','saveName']
aBot = None
qBot = None
# load aBot
if params['startFrom']:
aBot, loadedParams, _ = utils.loadModel(params, 'abot', overwrite=True)
assert aBot.encoder.vocabSize == dataset.vocabSize, "Vocab size mismatch!"
for key in loadedParams:
params[key] = loadedParams[key]
aBot.eval()
# Retaining certain dataloder parameters
for key in excludeParams:
params[key] = dlparams[key]
# load qBot
if params['qstartFrom']:
qBot, loadedParams, _ = utils.loadModel(params, 'qbot', overwrite=True)
assert qBot.encoder.vocabSize == params[
'vocabSize'], "Vocab size mismatch!"
for key in loadedParams:
params[key] = loadedParams[key]
qBot.eval()
# Retaining certain dataloder parameters
for key in excludeParams:
params[key] = dlparams[key]
# Plotting on vizdom
viz = VisdomVisualize(
enable=bool(params['enableVisdom']),
env_name=params['visdomEnv'],
server=params['visdomServer'],
port=params['visdomServerPort'])
pprint.pprint(params)
viz.addText(pprint.pformat(params, indent=4))
print("Running evaluation!")
numRounds = params['numRounds']
if 'ckpt_iterid' in params:
iterId = params['ckpt_iterid'] + 1
else:
iterId = -1
split = params['evalSplit']
assert split != 'train'
assert split in ['test', 'val']
if split == 'test':
splitName = 'test - {}'.format(params['evalTitle'])
else:
splitName = 'full Val - {}'.format(params['evalTitle'])
print("Using split %s" % split)
dataset.split = split
# if params['evalModeList'] == 'ABotRank':
if 'ABotRank' in params['evalModeList']:
print("Performing ABotRank evaluation")
with torch.no_grad():
rankMetrics = rankABot(
aBot, dataset, split, scoringFunction=utils.maskedNll, useNDCG=True)
if split == 'val':
for metric, value in rankMetrics.items():
plotName = splitName + ' - ABot Rank'
print(metric, value)
viz.linePlot(iterId, value, plotName, metric, xlabel='Iterations')
# if params['evalModeList'] == 'QBotRank':
if 'QBotRank' in params['evalModeList']:
print("Performing QBotRank evaluation")
with torch.no_grad():
rankMetrics, roundRanks = rankQBot(qBot, dataset, split, verbose=1)
for metric, value in rankMetrics.items():
plotName = splitName + ' - QBot Rank'
print(metric, value)
viz.linePlot(iterId, value, plotName, metric, xlabel='Iterations')
for r in range(numRounds + 1):
for metric, value in roundRanks[r].items():
plotName = '[Iter %d] %s - QABots Rank Roundwise' % \
(iterId, splitName)
viz.linePlot(r, value, plotName, metric, xlabel='Round')
# if params['evalModeList'] == 'QABotsRank':
if 'QABotsRank' in params['evalModeList']:
print("Performing QABotsRank evaluation")
with torch.no_grad():
rankMetrics, roundRanks = rankQABots(
qBot, aBot, dataset, split, beamSize=params['beamSize'])
for metric, value in rankMetrics.items():
plotName = splitName + ' - QABots Rank'
print(metric, value)
viz.linePlot(iterId, value, plotName, metric, xlabel='Iterations')
for r in range(numRounds + 1):
for metric, value in roundRanks[r].items():
plotName = '[Iter %d] %s - QBot All Metrics vs Round'%\
(iterId, splitName)
viz.linePlot(r, value, plotName, metric, xlabel='Round')
if 'dialog' in params['evalModeList']:
print("Performing dialog generation...")
split = 'val'
outputFolder = params["savePath"]
os.makedirs(outputFolder, exist_ok=True)
with torch.no_grad():
dialogDump(
params,
dataset,
split,
aBot=aBot,
qBot=qBot,
beamSize=params['beamSize'],
saveFolder=outputFolder)
if 'human_study' in params['evalModeList']:
# use new dataloader
dataset = VisDialDatasetHumanStudy(dlparams,['test'])
split = 'test'
outputFolder = params["savePath"]
os.makedirs(outputFolder, exist_ok=True)
with torch.no_grad():
dumpData(
params,
dataset,
split,
aBot=aBot,
qBot=qBot,
beamSize=params['beamSize'],
saveFolder=outputFolder)
viz.addText("Evaluation run complete!")