forked from NixOS/nixpkgs
-
Notifications
You must be signed in to change notification settings - Fork 0
/
lists.nix
900 lines (736 loc) · 25.5 KB
/
lists.nix
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
/* General list operations. */
{ lib }:
let
inherit (lib.strings) toInt;
inherit (lib.trivial) compare min id warn;
inherit (lib.attrsets) mapAttrs;
inherit (lib.lists) sort;
in
rec {
inherit (builtins) head tail length isList elemAt concatLists filter elem genList map;
/* Create a list consisting of a single element. `singleton x` is
sometimes more convenient with respect to indentation than `[x]`
when x spans multiple lines.
Type: singleton :: a -> [a]
Example:
singleton "foo"
=> [ "foo" ]
*/
singleton = x: [x];
/* Apply the function to each element in the list. Same as `map`, but arguments
flipped.
Type: forEach :: [a] -> (a -> b) -> [b]
Example:
forEach [ 1 2 ] (x:
toString x
)
=> [ "1" "2" ]
*/
forEach = xs: f: map f xs;
/* “right fold” a binary function `op` between successive elements of
`list` with `nul` as the starting value, i.e.,
`foldr op nul [x_1 x_2 ... x_n] == op x_1 (op x_2 ... (op x_n nul))`.
Type: foldr :: (a -> b -> b) -> b -> [a] -> b
Example:
concat = foldr (a: b: a + b) "z"
concat [ "a" "b" "c" ]
=> "abcz"
# different types
strange = foldr (int: str: toString (int + 1) + str) "a"
strange [ 1 2 3 4 ]
=> "2345a"
*/
foldr = op: nul: list:
let
len = length list;
fold' = n:
if n == len
then nul
else op (elemAt list n) (fold' (n + 1));
in fold' 0;
/* `fold` is an alias of `foldr` for historic reasons */
# FIXME(Profpatsch): deprecate?
fold = foldr;
/* “left fold”, like `foldr`, but from the left:
`foldl op nul [x_1 x_2 ... x_n] == op (... (op (op nul x_1) x_2) ... x_n)`.
Type: foldl :: (b -> a -> b) -> b -> [a] -> b
Example:
lconcat = foldl (a: b: a + b) "z"
lconcat [ "a" "b" "c" ]
=> "zabc"
# different types
lstrange = foldl (str: int: str + toString (int + 1)) "a"
lstrange [ 1 2 3 4 ]
=> "a2345"
*/
foldl = op: nul: list:
let
foldl' = n:
if n == -1
then nul
else op (foldl' (n - 1)) (elemAt list n);
in foldl' (length list - 1);
/*
Reduce a list by applying a binary operator from left to right,
starting with an initial accumulator.
Before each application of the operator, the accumulator value is evaluated.
This behavior makes this function stricter than [`foldl`](#function-library-lib.lists.foldl).
Unlike [`builtins.foldl'`](https://nixos.org/manual/nix/unstable/language/builtins.html#builtins-foldl'),
the initial accumulator argument is evaluated before the first iteration.
A call like
```nix
foldl' op acc₀ [ x₀ x₁ x₂ ... xₙ₋₁ xₙ ]
```
is (denotationally) equivalent to the following,
but with the added benefit that `foldl'` itself will never overflow the stack.
```nix
let
acc₁ = builtins.seq acc₀ (op acc₀ x₀ );
acc₂ = builtins.seq acc₁ (op acc₁ x₁ );
acc₃ = builtins.seq acc₂ (op acc₂ x₂ );
...
accₙ = builtins.seq accₙ₋₁ (op accₙ₋₁ xₙ₋₁);
accₙ₊₁ = builtins.seq accₙ (op accₙ xₙ );
in
accₙ₊₁
# Or ignoring builtins.seq
op (op (... (op (op (op acc₀ x₀) x₁) x₂) ...) xₙ₋₁) xₙ
```
Type: foldl' :: (acc -> x -> acc) -> acc -> [x] -> acc
Example:
foldl' (acc: x: acc + x) 0 [1 2 3]
=> 6
*/
foldl' =
/* The binary operation to run, where the two arguments are:
1. `acc`: The current accumulator value: Either the initial one for the first iteration, or the result of the previous iteration
2. `x`: The corresponding list element for this iteration
*/
op:
# The initial accumulator value
acc:
# The list to fold
list:
# The builtin `foldl'` is a bit lazier than one might expect.
# See https://github.com/NixOS/nix/pull/7158.
# In particular, the initial accumulator value is not forced before the first iteration starts.
builtins.seq acc
(builtins.foldl' op acc list);
/* Map with index starting from 0
Type: imap0 :: (int -> a -> b) -> [a] -> [b]
Example:
imap0 (i: v: "${v}-${toString i}") ["a" "b"]
=> [ "a-0" "b-1" ]
*/
imap0 = f: list: genList (n: f n (elemAt list n)) (length list);
/* Map with index starting from 1
Type: imap1 :: (int -> a -> b) -> [a] -> [b]
Example:
imap1 (i: v: "${v}-${toString i}") ["a" "b"]
=> [ "a-1" "b-2" ]
*/
imap1 = f: list: genList (n: f (n + 1) (elemAt list n)) (length list);
/* Map and concatenate the result.
Type: concatMap :: (a -> [b]) -> [a] -> [b]
Example:
concatMap (x: [x] ++ ["z"]) ["a" "b"]
=> [ "a" "z" "b" "z" ]
*/
concatMap = builtins.concatMap or (f: list: concatLists (map f list));
/* Flatten the argument into a single list; that is, nested lists are
spliced into the top-level lists.
Example:
flatten [1 [2 [3] 4] 5]
=> [1 2 3 4 5]
flatten 1
=> [1]
*/
flatten = x:
if isList x
then concatMap (y: flatten y) x
else [x];
/* Remove elements equal to 'e' from a list. Useful for buildInputs.
Type: remove :: a -> [a] -> [a]
Example:
remove 3 [ 1 3 4 3 ]
=> [ 1 4 ]
*/
remove =
# Element to remove from the list
e: filter (x: x != e);
/* Find the sole element in the list matching the specified
predicate, returns `default` if no such element exists, or
`multiple` if there are multiple matching elements.
Type: findSingle :: (a -> bool) -> a -> a -> [a] -> a
Example:
findSingle (x: x == 3) "none" "multiple" [ 1 3 3 ]
=> "multiple"
findSingle (x: x == 3) "none" "multiple" [ 1 3 ]
=> 3
findSingle (x: x == 3) "none" "multiple" [ 1 9 ]
=> "none"
*/
findSingle =
# Predicate
pred:
# Default value to return if element was not found.
default:
# Default value to return if more than one element was found
multiple:
# Input list
list:
let found = filter pred list; len = length found;
in if len == 0 then default
else if len != 1 then multiple
else head found;
/* Find the first index in the list matching the specified
predicate or return `default` if no such element exists.
Type: findFirstIndex :: (a -> Bool) -> b -> [a] -> (Int | b)
Example:
findFirstIndex (x: x > 3) null [ 0 6 4 ]
=> 1
findFirstIndex (x: x > 9) null [ 0 6 4 ]
=> null
*/
findFirstIndex =
# Predicate
pred:
# Default value to return
default:
# Input list
list:
let
# A naive recursive implementation would be much simpler, but
# would also overflow the evaluator stack. We use `foldl'` as a workaround
# because it reuses the same stack space, evaluating the function for one
# element after another. We can't return early, so this means that we
# sacrifice early cutoff, but that appears to be an acceptable cost. A
# clever scheme with "exponential search" is possible, but appears over-
# engineered for now. See https://github.com/NixOS/nixpkgs/pull/235267
# Invariant:
# - if index < 0 then el == elemAt list (- index - 1) and all elements before el didn't satisfy pred
# - if index >= 0 then pred (elemAt list index) and all elements before (elemAt list index) didn't satisfy pred
#
# We start with index -1 and the 0'th element of the list, which satisfies the invariant
resultIndex = foldl' (index: el:
if index < 0 then
# No match yet before the current index, we need to check the element
if pred el then
# We have a match! Turn it into the actual index to prevent future iterations from modifying it
- index - 1
else
# Still no match, update the index to the next element (we're counting down, so minus one)
index - 1
else
# There's already a match, propagate the index without evaluating anything
index
) (-1) list;
in
if resultIndex < 0 then
default
else
resultIndex;
/* Find the first element in the list matching the specified
predicate or return `default` if no such element exists.
Type: findFirst :: (a -> bool) -> a -> [a] -> a
Example:
findFirst (x: x > 3) 7 [ 1 6 4 ]
=> 6
findFirst (x: x > 9) 7 [ 1 6 4 ]
=> 7
*/
findFirst =
# Predicate
pred:
# Default value to return
default:
# Input list
list:
let
index = findFirstIndex pred null list;
in
if index == null then
default
else
elemAt list index;
/* Return true if function `pred` returns true for at least one
element of `list`.
Type: any :: (a -> bool) -> [a] -> bool
Example:
any isString [ 1 "a" { } ]
=> true
any isString [ 1 { } ]
=> false
*/
any = builtins.any or (pred: foldr (x: y: if pred x then true else y) false);
/* Return true if function `pred` returns true for all elements of
`list`.
Type: all :: (a -> bool) -> [a] -> bool
Example:
all (x: x < 3) [ 1 2 ]
=> true
all (x: x < 3) [ 1 2 3 ]
=> false
*/
all = builtins.all or (pred: foldr (x: y: if pred x then y else false) true);
/* Count how many elements of `list` match the supplied predicate
function.
Type: count :: (a -> bool) -> [a] -> int
Example:
count (x: x == 3) [ 3 2 3 4 6 ]
=> 2
*/
count =
# Predicate
pred: foldl' (c: x: if pred x then c + 1 else c) 0;
/* Return a singleton list or an empty list, depending on a boolean
value. Useful when building lists with optional elements
(e.g. `++ optional (system == "i686-linux") firefox`).
Type: optional :: bool -> a -> [a]
Example:
optional true "foo"
=> [ "foo" ]
optional false "foo"
=> [ ]
*/
optional = cond: elem: if cond then [elem] else [];
/* Return a list or an empty list, depending on a boolean value.
Type: optionals :: bool -> [a] -> [a]
Example:
optionals true [ 2 3 ]
=> [ 2 3 ]
optionals false [ 2 3 ]
=> [ ]
*/
optionals =
# Condition
cond:
# List to return if condition is true
elems: if cond then elems else [];
/* If argument is a list, return it; else, wrap it in a singleton
list. If you're using this, you should almost certainly
reconsider if there isn't a more "well-typed" approach.
Example:
toList [ 1 2 ]
=> [ 1 2 ]
toList "hi"
=> [ "hi "]
*/
toList = x: if isList x then x else [x];
/* Return a list of integers from `first` up to and including `last`.
Type: range :: int -> int -> [int]
Example:
range 2 4
=> [ 2 3 4 ]
range 3 2
=> [ ]
*/
range =
# First integer in the range
first:
# Last integer in the range
last:
if first > last then
[]
else
genList (n: first + n) (last - first + 1);
/* Return a list with `n` copies of an element.
Type: replicate :: int -> a -> [a]
Example:
replicate 3 "a"
=> [ "a" "a" "a" ]
replicate 2 true
=> [ true true ]
*/
replicate = n: elem: genList (_: elem) n;
/* Splits the elements of a list in two lists, `right` and
`wrong`, depending on the evaluation of a predicate.
Type: (a -> bool) -> [a] -> { right :: [a]; wrong :: [a]; }
Example:
partition (x: x > 2) [ 5 1 2 3 4 ]
=> { right = [ 5 3 4 ]; wrong = [ 1 2 ]; }
*/
partition = builtins.partition or (pred:
foldr (h: t:
if pred h
then { right = [h] ++ t.right; wrong = t.wrong; }
else { right = t.right; wrong = [h] ++ t.wrong; }
) { right = []; wrong = []; });
/* Splits the elements of a list into many lists, using the return value of a predicate.
Predicate should return a string which becomes keys of attrset `groupBy` returns.
`groupBy'` allows to customise the combining function and initial value
Example:
groupBy (x: boolToString (x > 2)) [ 5 1 2 3 4 ]
=> { true = [ 5 3 4 ]; false = [ 1 2 ]; }
groupBy (x: x.name) [ {name = "icewm"; script = "icewm &";}
{name = "xfce"; script = "xfce4-session &";}
{name = "icewm"; script = "icewmbg &";}
{name = "mate"; script = "gnome-session &";}
]
=> { icewm = [ { name = "icewm"; script = "icewm &"; }
{ name = "icewm"; script = "icewmbg &"; } ];
mate = [ { name = "mate"; script = "gnome-session &"; } ];
xfce = [ { name = "xfce"; script = "xfce4-session &"; } ];
}
groupBy' builtins.add 0 (x: boolToString (x > 2)) [ 5 1 2 3 4 ]
=> { true = 12; false = 3; }
*/
groupBy' = op: nul: pred: lst: mapAttrs (name: foldl op nul) (groupBy pred lst);
groupBy = builtins.groupBy or (
pred: foldl' (r: e:
let
key = pred e;
in
r // { ${key} = (r.${key} or []) ++ [e]; }
) {});
/* Merges two lists of the same size together. If the sizes aren't the same
the merging stops at the shortest. How both lists are merged is defined
by the first argument.
Type: zipListsWith :: (a -> b -> c) -> [a] -> [b] -> [c]
Example:
zipListsWith (a: b: a + b) ["h" "l"] ["e" "o"]
=> ["he" "lo"]
*/
zipListsWith =
# Function to zip elements of both lists
f:
# First list
fst:
# Second list
snd:
genList
(n: f (elemAt fst n) (elemAt snd n)) (min (length fst) (length snd));
/* Merges two lists of the same size together. If the sizes aren't the same
the merging stops at the shortest.
Type: zipLists :: [a] -> [b] -> [{ fst :: a; snd :: b; }]
Example:
zipLists [ 1 2 ] [ "a" "b" ]
=> [ { fst = 1; snd = "a"; } { fst = 2; snd = "b"; } ]
*/
zipLists = zipListsWith (fst: snd: { inherit fst snd; });
/* Reverse the order of the elements of a list.
Type: reverseList :: [a] -> [a]
Example:
reverseList [ "b" "o" "j" ]
=> [ "j" "o" "b" ]
*/
reverseList = xs:
let l = length xs; in genList (n: elemAt xs (l - n - 1)) l;
/* Depth-First Search (DFS) for lists `list != []`.
`before a b == true` means that `b` depends on `a` (there's an
edge from `b` to `a`).
Example:
listDfs true hasPrefix [ "/home/user" "other" "/" "/home" ]
== { minimal = "/"; # minimal element
visited = [ "/home/user" ]; # seen elements (in reverse order)
rest = [ "/home" "other" ]; # everything else
}
listDfs true hasPrefix [ "/home/user" "other" "/" "/home" "/" ]
== { cycle = "/"; # cycle encountered at this element
loops = [ "/" ]; # and continues to these elements
visited = [ "/" "/home/user" ]; # elements leading to the cycle (in reverse order)
rest = [ "/home" "other" ]; # everything else
*/
listDfs = stopOnCycles: before: list:
let
dfs' = us: visited: rest:
let
c = filter (x: before x us) visited;
b = partition (x: before x us) rest;
in if stopOnCycles && (length c > 0)
then { cycle = us; loops = c; inherit visited rest; }
else if length b.right == 0
then # nothing is before us
{ minimal = us; inherit visited rest; }
else # grab the first one before us and continue
dfs' (head b.right)
([ us ] ++ visited)
(tail b.right ++ b.wrong);
in dfs' (head list) [] (tail list);
/* Sort a list based on a partial ordering using DFS. This
implementation is O(N^2), if your ordering is linear, use `sort`
instead.
`before a b == true` means that `b` should be after `a`
in the result.
Example:
toposort hasPrefix [ "/home/user" "other" "/" "/home" ]
== { result = [ "/" "/home" "/home/user" "other" ]; }
toposort hasPrefix [ "/home/user" "other" "/" "/home" "/" ]
== { cycle = [ "/home/user" "/" "/" ]; # path leading to a cycle
loops = [ "/" ]; } # loops back to these elements
toposort hasPrefix [ "other" "/home/user" "/home" "/" ]
== { result = [ "other" "/" "/home" "/home/user" ]; }
toposort (a: b: a < b) [ 3 2 1 ] == { result = [ 1 2 3 ]; }
*/
toposort = before: list:
let
dfsthis = listDfs true before list;
toporest = toposort before (dfsthis.visited ++ dfsthis.rest);
in
if length list < 2
then # finish
{ result = list; }
else if dfsthis ? cycle
then # there's a cycle, starting from the current vertex, return it
{ cycle = reverseList ([ dfsthis.cycle ] ++ dfsthis.visited);
inherit (dfsthis) loops; }
else if toporest ? cycle
then # there's a cycle somewhere else in the graph, return it
toporest
# Slow, but short. Can be made a bit faster with an explicit stack.
else # there are no cycles
{ result = [ dfsthis.minimal ] ++ toporest.result; };
/* Sort a list based on a comparator function which compares two
elements and returns true if the first argument is strictly below
the second argument. The returned list is sorted in an increasing
order. The implementation does a quick-sort.
See also [`sortOn`](#function-library-lib.lists.sortOn), which applies the
default comparison on a function-derived property, and may be more efficient.
Example:
sort (p: q: p < q) [ 5 3 7 ]
=> [ 3 5 7 ]
Type:
sort :: (a -> a -> Bool) -> [a] -> [a]
*/
sort = builtins.sort or (
strictLess: list:
let
len = length list;
first = head list;
pivot' = n: acc@{ left, right }: let el = elemAt list n; next = pivot' (n + 1); in
if n == len
then acc
else if strictLess first el
then next { inherit left; right = [ el ] ++ right; }
else
next { left = [ el ] ++ left; inherit right; };
pivot = pivot' 1 { left = []; right = []; };
in
if len < 2 then list
else (sort strictLess pivot.left) ++ [ first ] ++ (sort strictLess pivot.right));
/*
Sort a list based on the default comparison of a derived property `b`.
The items are returned in `b`-increasing order.
**Performance**:
The passed function `f` is only evaluated once per item,
unlike an unprepared [`sort`](#function-library-lib.lists.sort) using
`f p < f q`.
**Laws**:
```nix
sortOn f == sort (p: q: f p < f q)
```
Example:
sortOn stringLength [ "aa" "b" "cccc" ]
=> [ "b" "aa" "cccc" ]
Type:
sortOn :: (a -> b) -> [a] -> [a], for comparable b
*/
sortOn = f: list:
let
# Heterogenous list as pair may be ugly, but requires minimal allocations.
pairs = map (x: [(f x) x]) list;
in
map
(x: builtins.elemAt x 1)
(sort
# Compare the first element of the pairs
# Do not factor out the `<`, to avoid calls in hot code; duplicate instead.
(a: b: head a < head b)
pairs);
/* Compare two lists element-by-element.
Example:
compareLists compare [] []
=> 0
compareLists compare [] [ "a" ]
=> -1
compareLists compare [ "a" ] []
=> 1
compareLists compare [ "a" "b" ] [ "a" "c" ]
=> -1
*/
compareLists = cmp: a: b:
if a == []
then if b == []
then 0
else -1
else if b == []
then 1
else let rel = cmp (head a) (head b); in
if rel == 0
then compareLists cmp (tail a) (tail b)
else rel;
/* Sort list using "Natural sorting".
Numeric portions of strings are sorted in numeric order.
Example:
naturalSort ["disk11" "disk8" "disk100" "disk9"]
=> ["disk8" "disk9" "disk11" "disk100"]
naturalSort ["10.46.133.149" "10.5.16.62" "10.54.16.25"]
=> ["10.5.16.62" "10.46.133.149" "10.54.16.25"]
naturalSort ["v0.2" "v0.15" "v0.0.9"]
=> [ "v0.0.9" "v0.2" "v0.15" ]
*/
naturalSort = lst:
let
vectorise = s: map (x: if isList x then toInt (head x) else x) (builtins.split "(0|[1-9][0-9]*)" s);
prepared = map (x: [ (vectorise x) x ]) lst; # remember vectorised version for O(n) regex splits
less = a: b: (compareLists compare (head a) (head b)) < 0;
in
map (x: elemAt x 1) (sort less prepared);
/* Return the first (at most) N elements of a list.
Type: take :: int -> [a] -> [a]
Example:
take 2 [ "a" "b" "c" "d" ]
=> [ "a" "b" ]
take 2 [ ]
=> [ ]
*/
take =
# Number of elements to take
count: sublist 0 count;
/* Remove the first (at most) N elements of a list.
Type: drop :: int -> [a] -> [a]
Example:
drop 2 [ "a" "b" "c" "d" ]
=> [ "c" "d" ]
drop 2 [ ]
=> [ ]
*/
drop =
# Number of elements to drop
count:
# Input list
list: sublist count (length list) list;
/* Whether the first list is a prefix of the second list.
Type: hasPrefix :: [a] -> [a] -> bool
Example:
hasPrefix [ 1 2 ] [ 1 2 3 4 ]
=> true
hasPrefix [ 0 1 ] [ 1 2 3 4 ]
=> false
*/
hasPrefix =
list1:
list2:
take (length list1) list2 == list1;
/* Remove the first list as a prefix from the second list.
Error if the first list isn't a prefix of the second list.
Type: removePrefix :: [a] -> [a] -> [a]
Example:
removePrefix [ 1 2 ] [ 1 2 3 4 ]
=> [ 3 4 ]
removePrefix [ 0 1 ] [ 1 2 3 4 ]
=> <error>
*/
removePrefix =
list1:
list2:
if hasPrefix list1 list2 then
drop (length list1) list2
else
throw "lib.lists.removePrefix: First argument is not a list prefix of the second argument";
/* Return a list consisting of at most `count` elements of `list`,
starting at index `start`.
Type: sublist :: int -> int -> [a] -> [a]
Example:
sublist 1 3 [ "a" "b" "c" "d" "e" ]
=> [ "b" "c" "d" ]
sublist 1 3 [ ]
=> [ ]
*/
sublist =
# Index at which to start the sublist
start:
# Number of elements to take
count:
# Input list
list:
let len = length list; in
genList
(n: elemAt list (n + start))
(if start >= len then 0
else if start + count > len then len - start
else count);
/* The common prefix of two lists.
Type: commonPrefix :: [a] -> [a] -> [a]
Example:
commonPrefix [ 1 2 3 4 5 6 ] [ 1 2 4 8 ]
=> [ 1 2 ]
commonPrefix [ 1 2 3 ] [ 1 2 3 4 5 ]
=> [ 1 2 3 ]
commonPrefix [ 1 2 3 ] [ 4 5 6 ]
=> [ ]
*/
commonPrefix =
list1:
list2:
let
# Zip the lists together into a list of booleans whether each element matches
matchings = zipListsWith (fst: snd: fst != snd) list1 list2;
# Find the first index where the elements don't match,
# which will then also be the length of the common prefix.
# If all elements match, we fall back to the length of the zipped list,
# which is the same as the length of the smaller list.
commonPrefixLength = findFirstIndex id (length matchings) matchings;
in
take commonPrefixLength list1;
/* Return the last element of a list.
This function throws an error if the list is empty.
Type: last :: [a] -> a
Example:
last [ 1 2 3 ]
=> 3
*/
last = list:
assert lib.assertMsg (list != []) "lists.last: list must not be empty!";
elemAt list (length list - 1);
/* Return all elements but the last.
This function throws an error if the list is empty.
Type: init :: [a] -> [a]
Example:
init [ 1 2 3 ]
=> [ 1 2 ]
*/
init = list:
assert lib.assertMsg (list != []) "lists.init: list must not be empty!";
take (length list - 1) list;
/* Return the image of the cross product of some lists by a function.
Example:
crossLists (x:y: "${toString x}${toString y}") [[1 2] [3 4]]
=> [ "13" "14" "23" "24" ]
*/
crossLists = warn
"lib.crossLists is deprecated, use lib.cartesianProductOfSets instead."
(f: foldl (fs: args: concatMap (f: map f args) fs) [f]);
/* Remove duplicate elements from the list. O(n^2) complexity.
Type: unique :: [a] -> [a]
Example:
unique [ 3 2 3 4 ]
=> [ 3 2 4 ]
*/
unique = foldl' (acc: e: if elem e acc then acc else acc ++ [ e ]) [];
/* Check if list contains only unique elements. O(n^2) complexity.
Type: allUnique :: [a] -> bool
Example:
allUnique [ 3 2 3 4 ]
=> false
allUnique [ 3 2 4 1 ]
=> true
*/
allUnique = list: (length (unique list) == length list);
/* Intersects list 'e' and another list. O(nm) complexity.
Example:
intersectLists [ 1 2 3 ] [ 6 3 2 ]
=> [ 3 2 ]
*/
intersectLists = e: filter (x: elem x e);
/* Subtracts list 'e' from another list. O(nm) complexity.
Example:
subtractLists [ 3 2 ] [ 1 2 3 4 5 3 ]
=> [ 1 4 5 ]
*/
subtractLists = e: filter (x: !(elem x e));
/* Test if two lists have no common element.
It should be slightly more efficient than (intersectLists a b == [])
*/
mutuallyExclusive = a: b: length a == 0 || !(any (x: elem x a) b);
}