-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathmain_page.py
275 lines (215 loc) · 9.75 KB
/
main_page.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
# -*- coding: utf-8 -*-
"""
Created on Sat Mar 28 16:58:45 2020
@author: Leibniz
"""
from tkinter import *
from tkinter import filedialog
from PIL import Image,ImageTk
import cv2 as cv
import numpy as np
import gc
import pandas as pd
from skimage.color import lab2lch, rgb2lab
from skimage.exposure import rescale_intensity
from skimage.morphology import disk
from sklearn.cluster import KMeans
class ImageTransfer(object):
def __init__(self,src=None):
#图像来源
self.image=src
def cv2PIL(self):
#opencv格式图像转为PIL格式
pil_image = Image.fromarray(cv.cvtColor(self.image, cv.COLOR_BGR2RGB))
return pil_image
def PIL2cv(self):
#PIL格式图像转换为opencv格式
cv_image = cv.cvtColor(np.asarray(self.image), cv.COLOR_RGB2BGR)
return cv_image
def np2cv(self):
#将numpy数组转换为opencv格式图像
return self.image
def np2PIL(self):
#numpy数据转换为PIL图像
pil_image=Image.fromarray(self.image)
return pil_image
def tk_image(self):
#将图像转换为可在tkinter框架中展示的图像
pil_img = self.cv2PIL()
show_image = ImageTk.PhotoImage(pil_img)
return show_image
class InitPage(object):
def __init__(self,master=None):
self.root=master
self.width=750
self.height=400
self.root.geometry('%dx%d' % (self.width,self.height))
self.defaultImagePath="./sources/src.jpg"
self.defaultResultPath="./sources/result.jpg"
self.src = self.tif_read(self.defaultImagePath)
self.result = self.tif_read(self.defaultResultPath)
self.mask=np.zeros(self.src.shape)
self.createPage()
def createPage(self):
#在root框架下创建页面
self.page = Frame(self.root,width=self.width,height=self.height) # 创建Frame
self.page.pack()
#self.threadGenerate()
#text label
#original_text_label=Label(self.page,text="原始图像",font=("", 11))
#original_text_label.place(relx=0.1, rely=0.0, relwidth=0.3, relheight=0.15)
#result_text_label = Label(self.page, text="结果图像",font=("", 11))
#result_text_label.place(relx=0.54, rely=0.0, relwidth=0.3, relheight=0.15)
#image label
show_image1=self.show_image(self.src)
self.original_image_label = Label(self.page, image=show_image1)
self.original_image_label.image=show_image1
self.original_image_label.place(relx=0.1, rely=0.1, relwidth=0.35, relheight=0.65)
show_image2 = ImageTransfer(self.normalSize(self.result)).tk_image()
self.result_image_label = Label(self.page, image=show_image2)
self.result_image_label.image=show_image2
self.result_image_label.place(relx=0.55, rely=0.1, relwidth=0.35, relheight=0.65)
button1 = Button(self.page, text='选择图像', command=self.chooseImage)
button1.place(relx=0.05, rely=0.85, relwidth=0.1, relheight=0.1)
button2 = Button(self.page, text='阴影检测', command=self.shadowDetection)
button2.place(relx=0.25, rely=0.85, relwidth=0.1, relheight=0.1)
button3 = Button(self.page, text='阴影叠加', command=self.shadowAdd)
button3.place(relx=0.45, rely=0.85, relwidth=0.1, relheight=0.1)
button4 = Button(self.page, text='阴影去除', command=self.shadowRemoval)
button4.place(relx=0.65, rely=0.85, relwidth=0.1, relheight=0.1)
button5 = Button(self.page, text='保存结果', command=self.saveImage)
button5.place(relx=0.85, rely=0.85, relwidth=0.1, relheight=0.1)
#
def shadowDetection(self, convolve_window_size = 5, num_thresholds = 0, struc_elem_size = 3):
#阴影检测函数
#判断卷积窗口格式
if (convolve_window_size % 2 == 0):
raise ValueError('Please make sure that convolve_window_size is an odd integer')
src=self.src.copy()
img = cv.cvtColor(src, cv.COLOR_BGR2RGB)
width=img.shape[0]
#阈值计算
if num_thresholds==0:
num_thresholds=int(0.01747*width+2.106)
if num_thresholds<3:
num_thresholds=3
if num_thresholds>9:
num_thresholds=10
#rgb图像转lab域,lab域转lch域
lch_img = np.float32(lab2lch(rgb2lab(img)))
#归一化
l_norm = rescale_intensity(lch_img[:, :, 0], out_range = (0, 1))
h_norm = rescale_intensity(lch_img[:, :, 2], out_range = (0, 1))
#计算sr值
sr_img = (h_norm + 1) / (l_norm + 1)
#log运算
log_sr_img = np.log(sr_img + 1)
del l_norm, h_norm, sr_img
gc.collect()
#平均滤波
avg_kernel = np.ones((convolve_window_size, convolve_window_size)) / (convolve_window_size ** 2)
blurred_sr_img = cv.filter2D(log_sr_img, ddepth = -1, kernel = avg_kernel)
#释放内存
del log_sr_img
gc.collect()
#图像平展化
flattened_sr_img = blurred_sr_img.flatten().reshape((-1, 1))
#图像内部像素聚类,得到阴影类
labels = KMeans(n_clusters = num_thresholds + 1, max_iter = 10000).fit(flattened_sr_img).labels_
flattened_sr_img = flattened_sr_img.flatten()
df = pd.DataFrame({'sample_pixels': flattened_sr_img, 'cluster': labels})
#otsu法设定阈值
threshold_value = df.groupby(['cluster']).min().max()[0]
df['Segmented'] = np.uint8(df['sample_pixels'] >= threshold_value)
del blurred_sr_img, flattened_sr_img, labels, threshold_value
gc.collect()
#初始化mask
shadow_mask_initial = np.array(df['Segmented']).reshape((img.shape[0], img.shape[1]))
struc_elem = disk(struc_elem_size)
#形态学滤波
shadow_mask = np.expand_dims(np.uint8(cv.morphologyEx(shadow_mask_initial, cv.MORPH_CLOSE, struc_elem)), axis = 0)
del df, shadow_mask_initial, struc_elem
gc.collect()
mask=shadow_mask[0]
self.mask=mask
self.result= cv.cvtColor(mask*255, cv.COLOR_GRAY2RGB)
self.page.destroy()
self.createPage()
def show_image(self,img):
show_image = ImageTransfer(self.normalSize(img)).tk_image()
return show_image
def chooseImage(self):
file_path = filedialog.askopenfilename()
print("图像路径:",file_path)
self.src=self.tif_read(file_path)
if self.src is None:
print("路径中不能含有中文字符!")
self.src = self.tif_read(self.defaultImagePath)
self.result = self.tif_read(self.defaultResultPath)
else:
self.result = self.tif_read(self.defaultResultPath)
self.page.destroy()
self.createPage()
print("载入图像中...")
def shadowAdd(self):
src=self.src.copy()
img = cv.cvtColor(src, cv.COLOR_BGR2RGB)
mask=self.mask
#阴影叠加
_,contours,hierarchy = cv.findContours(mask, cv.RETR_TREE, cv.CHAIN_APPROX_SIMPLE)
img = img[:, :, ::-1]
img[..., 2] = np.where(mask == 1, 255, img[..., 2])
#cv.imwrite("img_mask.jpg",img)
self.result=img
self.page.destroy()
self.createPage()
#阴影去除函数
def shadowRemoval(self,exponent = 1):
src=self.src.copy()
img = cv.cvtColor(src, cv.COLOR_BGR2RGB)
shadow_mask=self.mask
#print(shadow_mask.shape)
corrected_img = np.zeros((img.shape), dtype = np.uint8)
non_shadow_mask = np.uint8(shadow_mask == 0)
for i in range(img.shape[2]):
#阴影区域选择
shadow_area_mask = shadow_mask * img[:, :, i]
#非阴影区域选择
non_shadow_area_mask = non_shadow_mask * img[:, :, i]
#阴影状态输出:按照论文的公式计算结果
shadow_stats = np.float32(np.mean(((shadow_area_mask ** exponent) / np.sum(shadow_mask))) ** (1 / exponent))
non_shadow_stats = np.float32(np.mean(((non_shadow_area_mask ** exponent) / np.sum(non_shadow_mask))) ** (1 / exponent))
#计算非阴影部分与阴影部分的比例q
mul_ratio = ((non_shadow_stats - shadow_stats) / shadow_stats) + 1
#最终得到的图像
corrected_img[:, :, i] = np.uint8(non_shadow_area_mask + np.clip(shadow_area_mask * mul_ratio, 0, 255))
self.result=cv.cvtColor(corrected_img, cv.COLOR_RGB2BGR)
self.page.destroy()
self.createPage()
def saveImage(self):
file_path = filedialog.asksaveasfilename(title=u'保存文件')
print("保存路径:",file_path)
cv.imwrite(file_path,self.result)
#cv.imwrite(file_path,cv.cvtColor(self.result,cv.COLOR_RGB2BGR))
def normalSize(self,img):
return cv.resize(img,(260,260))
def tif_read(self,image_file):
tif=cv.imread(image_file,-1)
if tif.shape[-1]==4:
tif_rgb=tif[:,:,0:3]
src = cv.normalize(tif_rgb, dst=None, alpha=0, beta=255, norm_type=cv.NORM_MINMAX)
src = src[...,[2,1,0]]
src=np.array(src,dtype='uint8')
else:
src=tif
#cv.imwrite("./src.jpg",src)
return src
def threadGenerate(self):
th=threading.Thread(target=self.xx())
th.setDaemon(True)
th.start()
if __name__=='__main__':
root=Tk()
root.title("去阴影系统")
InitPage(root)
root.mainloop()