-
Notifications
You must be signed in to change notification settings - Fork 124
/
Copy pathinferenceP.m
executable file
·116 lines (97 loc) · 4.61 KB
/
inferenceP.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
% Codes for CVPR-15 work `Face Alignment by Coarse-to-Fine Shape Searching'
% Any question please contact Shizhan Zhu: [email protected]
% Released on July 25, 2015
function Pr = inferenceP(images,model,currentPose,level,probsInfo,tpt)
if ~exist('tpt','var')
tpt = model{level}.tpt;
end;
n_pts = size(currentPose,2) / 2;
m = length(images);
mt = size(tpt,1);
assert(size(currentPose,1) == m);
% Validation over currentPose
feat_current = [];
featInfo.scale = probsInfo.pyramidScale;
for scale = 1:length(probsInfo.pyramidScale)
feat_current = [feat_current ...
extractSIFTs_toosimple(images,selectPoses(currentPose,probsInfo.semantic_id),scale,featInfo)];
end;
feat_current = feat_current / 255;
featLen = 128;
scoring_board = cell(length(probsInfo.semantic_id),1);
Pr = NaN * zeros(m,mt,length(probsInfo.semantic_id)+length(probsInfo.fix_id));
record_point = zeros(m,2*(length(probsInfo.semantic_id)+length(probsInfo.fix_id)));
record_mask = zeros(m,length(probsInfo.semantic_id)+length(probsInfo.fix_id));
for i = 1:length(probsInfo.semantic_id)
ld_id = probsInfo.semantic_id(i);
scoring_board{i} = zeros(m,mt);
[~,~,confidence_current] = ...
svmpredict(zeros(m,1),selectFeatures(feat_current,i + [0 1 2] * length(probsInfo.semantic_id),featLen),...
model{level}.P.SVC{i},'-b 1 -q');
confidence_current = confidence_current(:,1);
ind = find(confidence_current >= probsInfo.acceptThre);
% for only current
dX = repmat(currentPose(ind,ld_id),[1,mt]) - repmat(tpt(:,ld_id)',[length(ind),1]);
dY = repmat(currentPose(ind,ld_id+n_pts),[1,mt]) - repmat(tpt(:,ld_id+n_pts)',[length(ind),1]);
scoring_board{i}(ind,:) = exp(-0.5 * probsInfo.gamma_current * (dX.^2 + dY.^2));
record_point(ind,selectPosesIdx(2*(length(probsInfo.semantic_id)+length(probsInfo.fix_id)),i)) = ...
selectPoses(currentPose(ind,:),ld_id);
ind = find(confidence_current < probsInfo.acceptThre);
% for considering resampling
feat_search = [];
for scale = 1:length(probsInfo.pyramidScale)
feat_search = [feat_search ...
extractSIFTs_toosimple(images(ind),repmat(model{level}.P.representativeLocation{i}(:)',...
[length(ind) 1]),scale,featInfo)];
end;
feat_search = feat_search / 255;
confidence_search = cell(1,size(model{level}.P.representativeLocation{i},1));
parfor j = 1:size(model{level}.P.representativeLocation{i},1)
[~,~,confidence_search{j}] = svmpredict(zeros(length(ind),1),...
selectFeatures(feat_search,j + [0 1 2] * size(model{level}.P.representativeLocation{i},1),featLen),...
model{level}.P.SVC{i},'-b 1 -q');
confidence_search{j} = confidence_search{j}(:,1);
end;
confidence_search = cutThre(cell2mat(confidence_search));
parfor j = 1:length(ind)
confidence_search(j,:) = confidence_search(j,:) ./ sum(confidence_search(j,:));
end; % Including NaN where no searching points hit more than half
searched_point = confidence_search * model{level}.P.representativeLocation{i};
dX = repmat(searched_point(:,1),[1,mt]) - repmat(tpt(:,ld_id)',[length(ind),1]);
dY = repmat(searched_point(:,2),[1,mt]) - repmat(tpt(:,ld_id+n_pts)',[length(ind),1]);
tmp = exp(-0.5 * probsInfo.gamma_current * (dX.^2 + dY.^2));
tmp(isnan(tmp)) = 1;
scoring_board{i}(ind,:) = tmp;
record_point(ind,selectPosesIdx(2*(length(probsInfo.semantic_id)+length(probsInfo.fix_id)),i)) = ...
searched_point;
record_mask(ind,i) = 1;
Pr(:,:,i) = scoring_board{i};
end;
for i = 1:length(probsInfo.fix_id)
ld_id = probsInfo.fix_id(i);
record_point(:,selectPosesIdx(2*(length(probsInfo.semantic_id)+length(probsInfo.fix_id)),i+length(probsInfo.semantic_id)))...
= selectPoses(currentPose,ld_id);
dX = repmat(currentPose(:,ld_id),[1,mt]) - repmat(tpt(:,ld_id)',[m,1]);
dY = repmat(currentPose(:,ld_id+n_pts),[1,mt]) - repmat(tpt(:,ld_id+n_pts)',[m,1]);
Pr(:,:,i+length(probsInfo.semantic_id)) = exp(-0.5 * probsInfo.gamma_current * (dX.^2 + dY.^2));
end;
record_Pr = Pr;
Pr = prod(Pr,3);
% Multiply the prior
prior = zeros(m,mt);
for i = 1:m
d = repmat(currentPose(i,:),mt,1) - tpt;
d_pca = usePCA(d,model{level}.P.pca_model);
prior(i,:) = diag(d_pca * diag(1./model{level}.P.sigma) * d_pca')';
end;
prior = exp(-0.5 * probsInfo.gamma_prior(level) * prior);
Pr = Pr .* prior;
parfor i = 1:m
Pr(i,:) = Pr(i,:) / sum(Pr(i,:));
end;
end
function y = cutThre(x,thre)
if ~exist('thre','var'), thre = 0.5; end;
y = x;
y(y < thre) = 0;
end