-
Notifications
You must be signed in to change notification settings - Fork 3
/
ntsc.py
740 lines (618 loc) · 29.4 KB
/
ntsc.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
import math
import random
from enum import Enum
from typing import List
import cv2
import numpy
import scipy
from scipy.signal import lfilter
from scipy.ndimage.interpolation import shift
import numpy as np
import cv2
M_PI = math.pi
Int_MIN_VALUE = -2147483648
Int_MAX_VALUE = 2147483647
RingPattern = np.load('ringPattern.npy')
def ringing(img2d, alpha=0.5, noiseSize=0, noiseValue=2, clip=True, seed=None):
"""
https://bavc.github.io/avaa/artifacts/ringing.html
:param img2d: 2d image
:param alpha: float, reconstruction quality (0-1) optimal values for tv ringing modeling is 0.3-0.99
:param noiseSize: float, noise size (0-1) optimal values is 0.5-0.99 if noiseSize=0 - no noise
:param noiseValue: float, noise amplitude (0-5) optimal values is 0.5-2
:return: 2d image
"""
dft = cv2.dft(np.float32(img2d), flags=cv2.DFT_COMPLEX_OUTPUT)
dft_shift = np.fft.fftshift(dft)
rows, cols = img2d.shape
crow, ccol = int(rows / 2), int(cols / 2)
mask = np.zeros((rows, cols, 2), np.uint8)
maskH = min(crow, int(1 + alpha * crow))
mask[:, ccol - maskH:ccol + maskH] = 1
if noiseSize > 0:
noise = np.ones((mask.shape[0], mask.shape[1], mask.shape[2])) * noiseValue - noiseValue / 2.
start = int(ccol - ((1 - noiseSize) * ccol))
stop = int(ccol + ((1 - noiseSize) * ccol))
noise[:, start:stop, :] = 0
rnd = np.random.RandomState(seed)
mask = mask.astype(np.float) + rnd.rand(mask.shape[0], mask.shape[1], mask.shape[2]) * noise - noise / 2.
img_back = cv2.idft(np.fft.ifftshift(dft_shift * mask), flags=cv2.DFT_SCALE)
if clip:
_min, _max = img2d.min(), img2d.max()
return np.clip(img_back[:, :, 0], _min, _max)
else:
return img_back[:, :, 0]
def ringing2(img2d, power=4, shift=0, clip=True):
"""
https://bavc.github.io/avaa/artifacts/ringing.html
:param img2d: 2d image
:param power: int, ringing parrern poser (optimal 2 - 6)
:return: 2d image
"""
dft = cv2.dft(np.float32(img2d), flags=cv2.DFT_COMPLEX_OUTPUT)
dft_shift = np.fft.fftshift(dft)
rows, cols = img2d.shape
scalecols = int(cols * (1 + shift))
mask = cv2.resize(RingPattern[np.newaxis, :], (scalecols, 1), interpolation=cv2.INTER_LINEAR)[0]
mask = mask[(scalecols // 2) - (cols // 2):(scalecols // 2) + (cols // 2)]
mask = mask ** power
img_back = cv2.idft(np.fft.ifftshift(dft_shift * mask[None, :, None]), flags=cv2.DFT_SCALE)
if clip:
_min, _max = img2d.min(), img2d.max()
return np.clip(img_back[:, :, 0], _min, _max)
else:
return img_back[:, :, 0]
def fmod(x: float, y: float) -> float:
return x % y
class NumpyRandom:
def __init__(self, seed=None):
self.rnd = numpy.random.RandomState(seed)
def nextInt(self, _from: int = Int_MIN_VALUE, until: int = Int_MAX_VALUE) -> int:
return self.rnd.randint(_from, until)
def nextIntArray(self, size: int, _from: int = Int_MIN_VALUE, until: int = Int_MAX_VALUE) -> numpy.ndarray:
return self.rnd.randint(_from, until, size, dtype=numpy.int32)
class XorWowRandom:
def __init__(self, seed1: int, seed2: int):
self.x: int = numpy.int32(seed1)
self.y: int = numpy.int32(seed2)
self.z: int = numpy.int32(0)
self.w: int = numpy.int32(0)
self.v: int = -numpy.int32(seed1) - 1
self.addend: int = numpy.int32((numpy.int32(seed1) << 10) ^ (numpy.uint32(seed2) >> 4))
[self._nextInt() for _ in range(0, 64)]
def _nextInt(self) -> int:
t = self.x
t = numpy.int32(t ^ (numpy.uint32(t) >> 2))
self.x = numpy.int32(self.y)
self.y = numpy.int32(self.z)
self.z = numpy.int32(self.w)
v0 = numpy.int32(self.v)
self.w = numpy.int32(v0)
t = (t ^ (t << 1)) ^ v0 ^ (v0 << 4)
self.v = numpy.int32(t)
self.addend += 362437
return t + numpy.int32(self.addend)
def nextInt(self, _from: int = Int_MIN_VALUE, until: int = Int_MAX_VALUE) -> numpy.int32:
n = until - _from
if n > 0 or n == Int_MIN_VALUE:
if (n & -n) == n:
assert False, "not implemented"
else:
v: int = 0
while True:
bits = numpy.uint32(self._nextInt()) >> 1
v = bits % n
if bits - v + (n - 1) >= 0:
break
return numpy.int32(_from + v)
else:
r = range(_from, until)
while True:
rnd = self._nextInt()
if rnd in r:
return numpy.int32(rnd)
def nextIntArray(self, size: int, _from: int = Int_MIN_VALUE, until: int = Int_MAX_VALUE) -> numpy.ndarray:
zeros = numpy.zeros(size, dtype=numpy.int32)
for i in range(0, size):
zeros[i] = self.nextInt(_from=_from, until=until)
return zeros
# interleaved uint8 HWC BGR to -> planar int32 CHW YIQ
def bgr2yiq(bgrimg: numpy.ndarray) -> numpy.ndarray:
planar = numpy.transpose(bgrimg, (2, 0, 1))
b, g, r = planar
dY = 0.30 * r + 0.59 * g + 0.11 * b
Y = (dY * 256).astype(numpy.int32)
I = (256 * (-0.27 * (b - dY) + 0.74 * (r - dY))).astype(numpy.int32)
Q = (256 * (0.41 * (b - dY) + 0.48 * (r - dY))).astype(numpy.int32)
return numpy.stack([Y, I, Q], axis=0).astype(numpy.int32)
# one field of planar int32 CHW YIQ -> one field of interleaved uint8 HWC BGR to
def yiq2bgr(yiq: numpy.ndarray, dst_bgr: numpy.ndarray = None, field: int = 0) -> numpy.ndarray:
c, h, w = yiq.shape
dst_bgr = dst_bgr if dst_bgr is not None else numpy.zeros((h, w, c))
Y, I, Q = yiq
if field == 0:
Y, I, Q = Y[::2], I[::2], Q[::2]
else:
Y, I, Q = Y[1::2], I[1::2], Q[1::2]
r = ((1.000 * Y + 0.956 * I + 0.621 * Q) / 256).astype(numpy.int32)
g = ((1.000 * Y + -0.272 * I + -0.647 * Q) / 256).astype(numpy.int32)
b = ((1.000 * Y + -1.106 * I + 1.703 * Q) / 256).astype(numpy.int32)
r = numpy.clip(r, 0, 255)
g = numpy.clip(g, 0, 255)
b = numpy.clip(b, 0, 255)
planarBGR = numpy.stack([b, g, r])
interleavedBGR = numpy.transpose(planarBGR, (1, 2, 0))
if field == 0:
dst_bgr[::2] = interleavedBGR
else:
dst_bgr[1::2] = interleavedBGR
return dst_bgr
class LowpassFilter:
def __init__(self, rate: float, hz: float, value: float = 0.0):
self.timeInterval: float = 1.0 / rate
self.tau: float = 1 / (hz * 2.0 * M_PI)
self.alpha: float = self.timeInterval / (self.tau + self.timeInterval)
self.prev: float = value
def lowpass(self, sample: float) -> float:
stage1 = sample * self.alpha
stage2 = self.prev - self.prev * self.alpha
self.prev = stage1 + stage2
return self.prev
def highpass(self, sample: float) -> float:
stage1 = sample * self.alpha
stage2 = self.prev - self.prev * self.alpha
self.prev = stage1 + stage2
return sample - self.prev
def lowpass_array(self, samples: numpy.ndarray) -> numpy.ndarray:
if self.prev == 0.0:
return lfilter([self.alpha], [1, -(1.0 - self.alpha)], samples)
else:
ic = scipy.signal.lfiltic([self.alpha], [1, -(1.0 - self.alpha)], [self.prev])
return lfilter([self.alpha], [1, -(1.0 - self.alpha)], samples, zi=ic)[0]
def highpass_array(self, samples: numpy.ndarray) -> numpy.ndarray:
f = self.lowpass_array(samples)
return samples - f
def composite_lowpass(yiq: numpy.ndarray, field: int, fieldno: int):
_, height, width = yiq.shape
fY, fI, fQ = yiq
for p in range(1, 3):
cutoff = 1300000.0 if p == 1 else 600000.0
delay = 2 if (p == 1) else 4
P = fI if (p == 1) else fQ
P = P[field::2]
lp = lowpassFilters(cutoff, reset=0.0)
for i, f in enumerate(P):
f = lp[0].lowpass_array(f)
f = lp[1].lowpass_array(f)
f = lp[2].lowpass_array(f)
P[i, 0:width - delay] = f.astype(numpy.int32)[delay:]
# lighter-weight filtering, probably what your old CRT does to reduce color fringes a bit
def composite_lowpass_tv(yiq: numpy.ndarray, field: int, fieldno: int):
_, height, width = yiq.shape
fY, fI, fQ = yiq
for p in range(1, 3):
delay = 1
P = fI if (p == 1) else fQ
P = P[field::2]
lp = lowpassFilters(2600000.0, reset=0.0)
for i, f in enumerate(P):
f = lp[0].lowpass_array(f)
f = lp[1].lowpass_array(f)
f = lp[2].lowpass_array(f)
P[i, 0:width - delay] = f.astype(numpy.int32)[delay:]
def composite_preemphasis(yiq: numpy.ndarray, field: int, composite_preemphasis: float,
composite_preemphasis_cut: float):
fY, fI, fQ = yiq
pre = LowpassFilter(Ntsc.NTSC_RATE, composite_preemphasis_cut, 16.0)
fields = fY[field::2]
for i, samples in enumerate(fields):
filtered = samples + pre.highpass_array(samples) * composite_preemphasis
fields[i] = filtered.astype(numpy.int32)
class VHSSpeed(Enum):
VHS_SP = (2400000.0, 320000.0, 9)
VHS_LP = (1900000.0, 300000.0, 12)
VHS_EP = (1400000.0, 280000.0, 14)
def __init__(self, luma_cut: float, chroma_cut: float, chroma_delay: int):
self.luma_cut = luma_cut
self.chroma_cut = chroma_cut
self.chroma_delay = chroma_delay
class Ntsc:
# https://en.wikipedia.org/wiki/NTSC
NTSC_RATE = 315000000.00 / 88 * 4 # 315/88 Mhz rate * 4
def __init__(self, precise=False, random=None):
self.precise = precise
self.random = random if random is not None else XorWowRandom(31374242, 0)
self._composite_preemphasis_cut = 1000000.0
# analog artifacts related to anything that affects the raw composite signal i.e. CATV modulation
self._composite_preemphasis = 0.0 # values 0..8 look realistic
self._vhs_out_sharpen = 1.5 # 1.0..5.0
self._vhs_edge_wave = 0 # 0..10
self._vhs_head_switching = False # turn this on only on frames height 486 pixels or more
self._vhs_head_switching_point = 1.0 - (4.5 + 0.01) / 262.5 # 4 scanlines NTSC up from vsync
self._vhs_head_switching_phase = (1.0 - 0.01) / 262.5 # 4 scanlines NTSC up from vsync
self._vhs_head_switching_phase_noise = 1.0 / 500 / 262.5 # 1/500th of a scanline
self._color_bleed_before = True # color bleed comes before other degradations if True or after otherwise
self._color_bleed_horiz = 0 # horizontal color bleeding 0 = no color bleed, 1..10 sane values
self._color_bleed_vert = 0 # vertical color bleeding 0 = no color bleed, 1..10 sane values
self._ringing = 1.0 # 1 = no ringing, 0.3..0.99 = sane values
self._enable_ringing2 = False
self._ringing_power = 2
self._ringing_shift = 0
self._freq_noise_size = 0 # (0-1) optimal values is 0.5..0.99 if noiseSize=0 - no noise
self._freq_noise_amplitude = 2 # noise amplitude (0-5) optimal values is 0.5-2
self._composite_in_chroma_lowpass = True # apply chroma lowpass before composite encode
self._composite_out_chroma_lowpass = True
self._composite_out_chroma_lowpass_lite = True
self._video_chroma_noise = 0 # 0..16384
self._video_chroma_phase_noise = 0 # 0..50
self._video_chroma_loss = 0 # 0..100_000
self._video_noise = 2 # 0..4200
self._subcarrier_amplitude = 50
self._subcarrier_amplitude_back = 50
self._emulating_vhs = False
self._nocolor_subcarrier = False # if set, emulate subcarrier but do not decode back to color (debug)
self._vhs_chroma_vert_blend = True # if set, and VHS, blend vertically the chroma scanlines (as the VHS format does)
self._vhs_svideo_out = False # if not set, and VHS, video is recombined as if composite out on VCR
self._output_ntsc = True # NTSC color subcarrier emulation
self._video_scanline_phase_shift = 180
self._video_scanline_phase_shift_offset = 0 # 0..4
self._output_vhs_tape_speed = VHSSpeed.VHS_SP
def rand(self) -> numpy.int32:
return self.random.nextInt(_from=0)
def rand_array(self, size: int) -> numpy.ndarray:
return self.random.nextIntArray(size, 0, Int_MAX_VALUE)
def video_noise(self, yiq: numpy.ndarray, field: int, video_noise: int):
_, height, width = yiq.shape
fY, fI, fQ = yiq
noise_mod = video_noise * 2 + 1
fields = fY[field::2]
fh, fw = fields.shape
if not self.precise: # this one works FAST
lp = LowpassFilter(1, 1, 0)
lp.alpha = 0.5
rnds = self.rand_array(fw * fh) % noise_mod - video_noise
noises = shift(lp.lowpass_array(rnds).astype(numpy.int32), 1)
fields += noises.reshape(fields.shape)
else: # this one works EXACTLY like original code
noise = 0
for field1 in fields:
rnds = self.rand_array(fw) % noise_mod - video_noise
for x in range(0, fw):
field1[x] += noise
noise += rnds[x]
noise = int(noise / 2)
# https://bavc.github.io/avaa/artifacts/chrominance_noise.html
def video_chroma_noise(self, yiq: numpy.ndarray, field: int, video_chroma_noise: int):
_, height, width = yiq.shape
fY, fI, fQ = yiq
noise_mod = video_chroma_noise * 2 + 1
U = fI[field::2]
V = fQ[field::2]
fh, fw = U.shape
if not self.precise:
lp = LowpassFilter(1, 1, 0)
lp.alpha = 0.5
rndsU = self.rand_array(fw * fh) % noise_mod - video_chroma_noise
noisesU = shift(lp.lowpass_array(rndsU).astype(numpy.int32), 1)
rndsV = self.rand_array(fw * fh) % noise_mod - video_chroma_noise
noisesV = shift(lp.lowpass_array(rndsV).astype(numpy.int32), 1)
U += noisesU.reshape(U.shape)
V += noisesV.reshape(V.shape)
else:
noiseU = 0
noiseV = 0
for y in range(0, fh):
for x in range(0, fw):
U[y][x] += noiseU
noiseU += self.rand() % noise_mod - video_chroma_noise
noiseU = int(noiseU / 2)
V[y][x] += noiseV
noiseV += self.rand() % noise_mod - video_chroma_noise
noiseV = int(noiseV / 2)
def video_chroma_phase_noise(self, yiq: numpy.ndarray, field: int, video_chroma_phase_noise: int):
_, height, width = yiq.shape
fY, fI, fQ = yiq
noise_mod = video_chroma_phase_noise * 2 + 1
U = fI[field::2]
V = fQ[field::2]
fh, fw = U.shape
noise = 0
for y in range(0, fh):
noise += self.rand() % noise_mod - video_chroma_phase_noise
noise = int(noise / 2)
pi = noise * M_PI / 100
sinpi = math.sin(pi)
cospi = math.cos(pi)
u = U[y] * cospi - V[y] * sinpi
v = U[y] * sinpi + V[y] * cospi
U[y, :] = u
V[y, :] = v
def vhs_head_switching(self, yiq: numpy.ndarray, field: int = 0):
_, height, width = yiq.shape
fY, fI, fQ = yiq
twidth = width + width // 10
shy = 0
noise = 0.0
if self._vhs_head_switching_phase_noise != 0.0:
x = numpy.int32(self.rand() * self.rand() * self.rand() * self.rand())
x %= 2000000000
noise = x / 1000000000.0 - 1.0
noise *= self._vhs_head_switching_phase_noise
t = twidth * (262.5 if self._output_ntsc else 312.5)
p = int(fmod(self._vhs_head_switching_point + noise, 1.0) * t)
y = int(p // twidth * 2) + field
p = int(fmod(self._vhs_head_switching_phase + noise, 1.0) * t)
x = p % twidth
y -= (262 - 240) * 2 if self._output_ntsc else (312 - 288) * 2
tx = x
ishif = x - twidth if x >= twidth // 2 else x
shif = 0
while y < height:
if y >= 0:
Y = fY[y]
if shif != 0:
tmp = numpy.zeros(twidth)
x2 = (tx + twidth + shif) % twidth
tmp[:width] = Y
x = tx
while x < width:
Y[x] = tmp[x2]
x2 += 1
if x2 == twidth:
x2 = 0
x += 1
shif = ishif if shy == 0 else int(shif * 7 / 8)
tx = 0
y += 2
shy += 1
_Umult = numpy.array([1, 0, -1, 0], dtype=numpy.int32)
_Vmult = numpy.array([0, 1, 0, -1], dtype=numpy.int32)
def _chroma_luma_xi(self, fieldno: int, y: int):
if self._video_scanline_phase_shift == 90:
return int(fieldno + self._video_scanline_phase_shift_offset + (y >> 1)) & 3
elif self._video_scanline_phase_shift == 180:
return int(((((fieldno + y) & 2) + self._video_scanline_phase_shift_offset) & 3))
elif self._video_scanline_phase_shift == 270:
return int(((fieldno + self._video_scanline_phase_shift_offset) & 3))
else:
return int(self._video_scanline_phase_shift_offset & 3)
def chroma_into_luma(self, yiq: numpy.ndarray, field: int, fieldno: int, subcarrier_amplitude: int):
_, height, width = yiq.shape
fY, fI, fQ = yiq
y = field
umult = numpy.tile(Ntsc._Umult, int((width / 4) + 1))
vmult = numpy.tile(Ntsc._Vmult, int((width / 4) + 1))
while y < height:
Y = fY[y]
I = fI[y]
Q = fQ[y]
xi = self._chroma_luma_xi(fieldno, y)
chroma = I * subcarrier_amplitude * umult[xi:xi + width]
chroma += Q * subcarrier_amplitude * vmult[xi:xi + width]
Y[:] = Y + chroma.astype(numpy.int32) // 50
I[:] = 0
Q[:] = 0
y += 2
def chroma_from_luma(self, yiq: numpy.ndarray, field: int, fieldno: int, subcarrier_amplitude: int):
_, height, width = yiq.shape
fY, fI, fQ = yiq
chroma = numpy.zeros(width, dtype=numpy.int32)
for y in range(field, height, 2):
Y = fY[y]
I = fI[y]
Q = fQ[y]
sum: int = Y[0] + Y[1]
y2 = numpy.pad(Y[2:], (0, 2))
yd4 = numpy.pad(Y[:-2], (2, 0))
sums = y2 - yd4
sums0 = numpy.concatenate([numpy.array([sum], dtype=numpy.int32), sums])
acc = numpy.add.accumulate(sums0, dtype=numpy.int32)[1:]
acc4 = acc // 4
chroma = y2 - acc4
Y[:] = acc4
xi = self._chroma_luma_xi(fieldno, y)
x = 4 - xi & 3
# // flip the part of the sine wave that would correspond to negative U and V values
chroma[x + 2::4] = -chroma[x + 2::4]
chroma[x + 3::4] = -chroma[x + 3::4]
chroma = (chroma * 50 / subcarrier_amplitude)
# decode the color right back out from the subcarrier we generated
cxi = -chroma[xi::2]
cxi1 = -chroma[xi + 1::2]
I[::2] = numpy.pad(cxi, (0, width // 2 - cxi.shape[0]))
Q[::2] = numpy.pad(cxi1, (0, width // 2 - cxi1.shape[0]))
I[1:width - 2:2] = (I[:width - 2:2] + I[2::2]) >> 1
Q[1:width - 2:2] = (Q[:width - 2:2] + Q[2::2]) >> 1
I[width - 2:] = 0
Q[width - 2:] = 0
def vhs_luma_lowpass(self, yiq: numpy.ndarray, field: int, luma_cut: float):
_, height, width = yiq.shape
fY, fI, fQ = yiq
for Y in fY[field::2]:
pre = LowpassFilter(Ntsc.NTSC_RATE, luma_cut, 16.0)
lp = lowpassFilters(cutoff=luma_cut, reset=16.0)
f0 = lp[0].lowpass_array(Y)
f1 = lp[1].lowpass_array(f0)
f2 = lp[2].lowpass_array(f1)
f3 = f2 + pre.highpass_array(f2) * 1.6
Y[:] = f3
def vhs_chroma_lowpass(self, yiq: numpy.ndarray, field: int, chroma_cut: float, chroma_delay: int):
_, height, width = yiq.shape
fY, fI, fQ = yiq
for U in fI[field::2]:
lpU = lowpassFilters(cutoff=chroma_cut, reset=0.0)
f0 = lpU[0].lowpass_array(U)
f1 = lpU[1].lowpass_array(f0)
f2 = lpU[2].lowpass_array(f1)
U[:width - chroma_delay] = f2[chroma_delay:]
for V in fQ[field::2]:
lpV = lowpassFilters(cutoff=chroma_cut, reset=0.0)
f0 = lpV[0].lowpass_array(V)
f1 = lpV[1].lowpass_array(f0)
f2 = lpV[2].lowpass_array(f1)
V[:width - chroma_delay] = f2[chroma_delay:]
# VHS decks also vertically smear the chroma subcarrier using a delay line
# to add the previous line's color subcarrier to the current line's color subcarrier.
# note that phase changes in NTSC are compensated for by the VHS deck to make the
# phase line up per scanline (else summing the previous line's carrier would
# cancel it out).
def vhs_chroma_vert_blend(self, yiq: numpy.ndarray, field: int):
_, height, width = yiq.shape
fY, fI, fQ = yiq
U2 = fI[field + 2::2, ]
V2 = fQ[field + 2::2, ]
delayU = numpy.pad(U2[:-1, ], [[1, 0], [0, 0]])
delayV = numpy.pad(V2[:-1, ], [[1, 0], [0, 0]])
fI[field + 2::2, ] = (delayU + U2 + 1) >> 1
fQ[field + 2::2, ] = (delayV + V2 + 1) >> 1
def vhs_sharpen(self, yiq: numpy.ndarray, field: int, luma_cut: float):
_, height, width = yiq.shape
fY, fI, fQ = yiq
for Y in fY[field::2]:
lp = lowpassFilters(cutoff=luma_cut * 4, reset=0.0)
s = Y
ts = lp[0].lowpass_array(Y)
ts = lp[1].lowpass_array(ts)
ts = lp[2].lowpass_array(ts)
Y[:] = (s + (s - ts) * self._vhs_out_sharpen * 2.0)
# http://www.michaeldvd.com.au/Articles/VideoArtefacts/VideoArtefactsColourBleeding.html
# https://bavc.github.io/avaa/artifacts/yc_delay_error.html
def color_bleed(self, yiq: numpy.ndarray, field: int):
_, height, width = yiq.shape
fY, fI, fQ = yiq
field_ = fI[field::2]
h, w = field_.shape
fI[field::2] = numpy.pad(field_, ((self._color_bleed_vert, 0), (self._color_bleed_horiz, 0)))[0:h, 0:w]
field_ = fQ[field::2]
h, w = field_.shape
fQ[field::2] = numpy.pad(field_, ((self._color_bleed_vert, 0), (self._color_bleed_horiz, 0)))[0:h, 0:w]
def vhs_edge_wave(self, yiq: numpy.ndarray, field: int):
_, height, width = yiq.shape
fY, fI, fQ = yiq
rnds = self.random.nextIntArray(height // 2, 0, self._vhs_edge_wave)
lp = LowpassFilter(Ntsc.NTSC_RATE, self._output_vhs_tape_speed.luma_cut,
0) # no real purpose to initialize it with ntsc values
rnds = lp.lowpass_array(rnds).astype(numpy.int32)
for y, Y in enumerate(fY[field::2]):
if rnds[y] != 0:
shift = rnds[y]
Y[:] = numpy.pad(Y, (shift, 0))[:-shift]
for y, I in enumerate(fI[field::2]):
if rnds[y] != 0:
shift = rnds[y]
I[:] = numpy.pad(I, (shift, 0))[:-shift]
for y, Q in enumerate(fQ[field::2]):
if rnds[y] != 0:
shift = rnds[y]
Q[:] = numpy.pad(Q, (shift, 0))[:-shift]
def vhs_chroma_loss(self, yiq: numpy.ndarray, field: int, video_chroma_loss: int):
_, height, width = yiq.shape
fY, fI, fQ = yiq
for y in range(field, height, 2):
U = fI[y]
V = fQ[y]
if self.rand() % 100000 < video_chroma_loss:
U[:] = 0
V[:] = 0
def emulate_vhs(self, yiq: numpy.ndarray, field: int, fieldno: int):
vhs_speed = self._output_vhs_tape_speed
if self._vhs_edge_wave != 0:
self.vhs_edge_wave(yiq, field)
self.vhs_luma_lowpass(yiq, field, vhs_speed.luma_cut)
self.vhs_chroma_lowpass(yiq, field, vhs_speed.chroma_cut, vhs_speed.chroma_delay)
if self._vhs_chroma_vert_blend and self._output_ntsc:
self.vhs_chroma_vert_blend(yiq, field)
if True: # TODO: make option
self.vhs_sharpen(yiq, field, vhs_speed.luma_cut)
if not self._vhs_svideo_out:
self.chroma_into_luma(yiq, field, fieldno, self._subcarrier_amplitude)
self.chroma_from_luma(yiq, field, fieldno, self._subcarrier_amplitude)
def composite_layer(self, dst: numpy.ndarray, src: numpy.ndarray, field: int, fieldno: int):
assert dst.shape == src.shape, "dst and src images must be of same shape"
yiq = bgr2yiq(src)
if self._color_bleed_before and (self._color_bleed_vert != 0 or self._color_bleed_horiz != 0):
self.color_bleed(yiq, field)
if self._composite_in_chroma_lowpass:
composite_lowpass(yiq, field, fieldno)
if self._ringing != 1.0:
self.ringing(yiq, field)
self.chroma_into_luma(yiq, field, fieldno, self._subcarrier_amplitude)
if self._composite_preemphasis != 0.0 and self._composite_preemphasis_cut > 0:
composite_preemphasis(yiq, field, self._composite_preemphasis, self._composite_preemphasis_cut)
if self._video_noise != 0:
self.video_noise(yiq, field, self._video_noise)
if self._vhs_head_switching:
self.vhs_head_switching(yiq, field)
if not self._nocolor_subcarrier:
self.chroma_from_luma(yiq, field, fieldno, self._subcarrier_amplitude_back)
if self._video_chroma_noise != 0:
self.video_chroma_noise(yiq, field, self._video_chroma_noise)
if self._video_chroma_phase_noise != 0:
self.video_chroma_phase_noise(yiq, field, self._video_chroma_phase_noise)
if self._emulating_vhs:
self.emulate_vhs(yiq, field, fieldno)
if self._video_chroma_loss != 0:
self.vhs_chroma_loss(yiq, field, self._video_chroma_loss)
if self._composite_out_chroma_lowpass:
if self._composite_out_chroma_lowpass_lite:
composite_lowpass_tv(yiq, field, fieldno)
else:
composite_lowpass(yiq, field, fieldno)
if not self._color_bleed_before and (self._color_bleed_vert != 0 or self._color_bleed_horiz != 0):
self.color_bleed(yiq, field)
# if self._ringing != 1.0:
# self.ringing(yiq, field)
Y, I, Q = yiq
# simulate 2x less bandwidth for chroma components, just like yuv420
I[field::2] = self._blur_chroma(I[field::2])
Q[field::2] = self._blur_chroma(Q[field::2])
yiq2bgr(yiq, dst, field)
def _blur_chroma(self, chroma: numpy.ndarray) -> numpy.ndarray:
h, w = chroma.shape
down2 = cv2.resize(chroma.astype(numpy.float32), (w // 2, h // 2), interpolation=cv2.INTER_LANCZOS4)
return cv2.resize(down2, (w, h), interpolation=cv2.INTER_LANCZOS4).astype(numpy.int32)
def ringing(self, yiq: numpy.ndarray, field: int):
Y, I, Q = yiq
sz = self._freq_noise_size
amp = self._freq_noise_amplitude
shift = self._ringing_shift
if not self._enable_ringing2:
Y[field::2] = ringing(Y[field::2], self._ringing, noiseSize=sz, noiseValue=amp, clip=False)
I[field::2] = ringing(I[field::2], self._ringing, noiseSize=sz, noiseValue=amp, clip=False)
Q[field::2] = ringing(Q[field::2], self._ringing, noiseSize=sz, noiseValue=amp, clip=False)
else:
Y[field::2] = ringing2(Y[field::2], power=self._ringing_power, shift=shift, clip=False)
I[field::2] = ringing2(I[field::2], power=self._ringing_power, shift=shift, clip=False)
Q[field::2] = ringing2(Q[field::2], power=self._ringing_power, shift=shift, clip=False)
def random_ntsc(seed=None) -> Ntsc:
rnd = random.Random(seed)
ntsc = Ntsc(random=NumpyRandom(seed))
ntsc._composite_preemphasis = rnd.triangular(0, 8, 0)
ntsc._vhs_out_sharpen = rnd.triangular(1, 5, 1.5)
ntsc._composite_in_chroma_lowpass = rnd.random() < 0.8 # lean towards default value
ntsc._composite_out_chroma_lowpass = rnd.random() < 0.8 # lean towards default value
ntsc._composite_out_chroma_lowpass_lite = rnd.random() < 0.8 # lean towards default value
ntsc._video_chroma_noise = int(rnd.triangular(0, 16384, 2))
ntsc._video_chroma_phase_noise = int(rnd.triangular(0, 50, 2))
ntsc._video_chroma_loss = int(rnd.triangular(0, 50000, 10))
ntsc._video_noise = int(rnd.triangular(0, 4200, 2))
ntsc._emulating_vhs = rnd.random() < 0.2 # lean towards default value
ntsc._vhs_edge_wave = int(rnd.triangular(0, 5, 0))
ntsc._video_scanline_phase_shift = rnd.choice([0, 90, 180, 270])
ntsc._video_scanline_phase_shift_offset = rnd.randint(0, 3)
ntsc._output_vhs_tape_speed = rnd.choice([VHSSpeed.VHS_SP, VHSSpeed.VHS_LP, VHSSpeed.VHS_EP])
enable_ringing = rnd.random() < 0.8
if enable_ringing:
ntsc._ringing = rnd.uniform(0.3, 0.7)
enable_freq_noise = rnd.random() < 0.8
if enable_freq_noise:
ntsc._freq_noise_size = rnd.uniform(0.5, 0.99)
ntsc._freq_noise_amplitude = rnd.uniform(0.5, 2.0)
ntsc._enable_ringing2 = rnd.random() < 0.5
ntsc._ringing_power = rnd.randint(2, 7)
ntsc._color_bleed_before = 1 == rnd.randint(0, 1)
ntsc._color_bleed_horiz = int(rnd.triangular(0, 8, 0))
ntsc._color_bleed_vert = int(rnd.triangular(0, 8, 0))
return ntsc
def lowpassFilters(cutoff: float, reset: float, rate: float = Ntsc.NTSC_RATE) -> List[LowpassFilter]:
return [LowpassFilter(rate, cutoff, reset) for x in range(0, 3)]