FCOS: Fully Convolutional One-Stage Object Detection;
Zhi Tian, Chunhua Shen, Hao Chen, and Tong He;
In: Proc. Int. Conf. Computer Vision (ICCV), 2019.
arXiv preprint arXiv:1904.01355
No special setup needed. The default instruction is fine.
COCO Object Detecton Baselines with FCOS
Name | inf. time | box AP | box AP (test-dev) | download |
---|---|---|---|---|
FCOS_R_50_1x | 16 FPS | 38.7 | 38.8 | model |
FCOS_MS_R_50_2x | 16 FPS | 41.0 | 41.4 | model |
FCOS_MS_R_101_2x | 12 FPS | 43.1 | 43.2 | model |
FCOS_MS_X_101_32x8d_2x | 6.6 FPS | 43.9 | 44.1 | model |
FCOS_MS_X_101_64x4d_2x | 6.1 FPS | 44.7 | 44.8 | model |
FCOS_MS_X_101_32x8d_dcnv2_2x | 4.6 FPS | 46.6 | 46.6 | model |
Except for FCOS_R_50_1x, all other models are trained with multi-scale data augmentation.
Name | inf. time | box AP | box AP (test-dev) | download |
---|---|---|---|---|
FCOS_RT_MS_DLA_34_4x_shtw | 52 FPS | 39.1 | 39.2 | model |
FCOS_RT_MS_DLA_34_4x | 46 FPS | 40.3 | 40.3 | model |
FCOS_RT_MS_R_50_4x | 38 FPS | 40.2 | 40.2 | model |
If you prefer BN in FCOS heads, please try the following models.
Name | inf. time | box AP | box AP (test-dev) | download |
---|---|---|---|---|
FCOS_RT_MS_DLA_34_4x_shtw_bn | 52 FPS | 38.9 | 39.1 | model |
FCOS_RT_MS_DLA_34_4x_bn | 48 FPS | 39.4 | 39.9 | model |
FCOS_RT_MS_R_50_4x_bn | 40 FPS | 39.3 | 39.7 | model |
Inference time is measured on a NVIDIA 1080Ti with batch size 1. Real-time models use shorter side 512 for inference.
If you use FCOS in your research or wish to refer to the baseline results, please use the following BibTeX entries.
@inproceedings{tian2019fcos,
title = {{FCOS}: Fully Convolutional One-Stage Object Detection},
author = {Tian, Zhi and Shen, Chunhua and Chen, Hao and He, Tong},
booktitle = {Proc. Int. Conf. Computer Vision (ICCV)},
year = {2019}
}