diff --git a/docs/introduction/training_to_deployment.md b/docs/introduction/training_to_deployment.md index 968f1f8d0e42c3..3d679495172f92 100644 --- a/docs/introduction/training_to_deployment.md +++ b/docs/introduction/training_to_deployment.md @@ -219,6 +219,33 @@ if __name__ == '__main__': paddle.jit.save(net, 'inference_model/lenet') ``` +Paddle 2.0 默认保存的权重格式为 `*.pdiparams` 后缀的文件。若因特殊需求,希望沿用旧版本的分离权重方式,请参考以下示例进行另存为。Paddle 2.0 兼容支持这种旧格式推理部署模型的加载。 + +``` +import paddle + +if __name__ == '__main__': + paddle.enable_static() + place = paddle.CPUPlace() + exe = paddle.static.Executor(place) + + # load combined params and model + program, _, _ = paddle.static.load_inference_model( + path_prefix='inference_model', + executor=exe, + model_filename='lenet.pdmodel', + params_filename='lenet.pdiparams') + + # save as separate persistables + paddle.static.save_vars( + executor=exe, + dirname="separate_persistables", + main_program=program, + vars=None, + predicate=paddle.static.io.is_persistable) +``` + + ## 三、使用 Paddle 2.0 Python 接口预测部署 我们使用存储好的预测部署模型,借助 Python 2.0 接口执行预测部署。