-
Notifications
You must be signed in to change notification settings - Fork 14
/
Copy pathmodels.py
executable file
·343 lines (268 loc) · 13.1 KB
/
models.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
from torch import Tensor
import torch
import torch.nn as nn
from torch import nn, einsum
import torch.nn.functional as F
import torch.utils.checkpoint
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
import math
# from utils import create_mask
import torchvision
from torch.nn.utils.rnn import pad_sequence
#import pytorchvideo.models.x3d as x3d
import utils as utils
""" PyTorch MBART model."""
from transformers import MBartForConditionalGeneration, MBartPreTrainedModel, MBartModel, MBartConfig
from transformers.modeling_outputs import (
BaseModelOutput,
BaseModelOutputWithPastAndCrossAttentions,
CausalLMOutputWithCrossAttentions,
Seq2SeqLMOutput,
Seq2SeqModelOutput,
Seq2SeqQuestionAnsweringModelOutput,
Seq2SeqSequenceClassifierOutput,
)
from transformers.models.mbart.modeling_mbart import shift_tokens_right
from transformers.models.mbart.modeling_mbart import MBartLearnedPositionalEmbedding, MBartEncoderLayer, _expand_mask
from collections import OrderedDict
import copy
import math
import random
from typing import List, Optional, Tuple, Union
from einops import rearrange, repeat
from einops.layers.torch import Rearrange
import numpy as np
# global definition
from definition import *
from hpman.m import _
from pathlib import Path
class PositionalEncoding(nn.Module):
def __init__(self,
emb_size: int,
dropout: float,
maxlen: int = 5000):
super(PositionalEncoding, self).__init__()
den = torch.exp(- torch.arange(0, emb_size, 2)* math.log(10000) / emb_size)
pos = torch.arange(0, maxlen).reshape(maxlen, 1)
pos_embedding = torch.zeros((maxlen, emb_size))
pos_embedding[:, 0::2] = torch.sin(pos * den)
pos_embedding[:, 1::2] = torch.cos(pos * den)
pos_embedding = pos_embedding.unsqueeze(-2)
self.dropout = nn.Dropout(dropout)
self.register_buffer('pos_embedding', pos_embedding)
def forward(self, token_embedding: Tensor):
return self.dropout(token_embedding + self.pos_embedding[:token_embedding.size(0), :])
def make_resnet(name='resnet18'):
if name == 'resnet18':
model = torchvision.models.resnet18(pretrained=True)
elif name == 'resnet34':
model = torchvision.models.resnet34(pretrained=True)
elif name == 'resnet50':
model = torchvision.models.resnet50(pretrained=True)
elif name == 'resnet101':
model = torchvision.models.resnet101(pretrained=True)
else:
raise Exception('There are no supported resnet model {}.'.format(_('resnet')))
inchannel = model.fc.in_features
model.fc = nn.Identity()
return model
class resnet(nn.Module):
def __init__(self):
super(resnet, self).__init__()
self.resnet = make_resnet(name='resnet18')
def forward(self, x, lengths):
x = self.resnet(x)
x_batch = []
start = 0
for length in lengths:
end = start + length
x_batch.append(x[start:end])
start = end
x = pad_sequence(x_batch,padding_value=PAD_IDX,batch_first=True)
return x
class TemporalConv(nn.Module):
def __init__(self, input_size, hidden_size, conv_type=2):
super(TemporalConv, self).__init__()
self.input_size = input_size
self.hidden_size = hidden_size
self.conv_type = conv_type
if self.conv_type == 0:
self.kernel_size = ['K3']
elif self.conv_type == 1:
self.kernel_size = ['K5', "P2"]
elif self.conv_type == 2:
self.kernel_size = ['K5', "P2", 'K5', "P2"]
modules = []
for layer_idx, ks in enumerate(self.kernel_size):
input_sz = self.input_size if layer_idx == 0 else self.hidden_size
if ks[0] == 'P':
modules.append(nn.MaxPool1d(kernel_size=int(ks[1]), ceil_mode=False))
elif ks[0] == 'K':
modules.append(
nn.Conv1d(input_sz, self.hidden_size, kernel_size=int(ks[1]), stride=1, padding=0)
)
modules.append(nn.BatchNorm1d(self.hidden_size))
modules.append(nn.ReLU(inplace=True))
self.temporal_conv = nn.Sequential(*modules)
def forward(self, x):
x = self.temporal_conv(x.permute(0,2,1))
return x.permute(0,2,1)
def make_head(inplanes, planes, head_type):
if head_type == 'linear':
return nn.Linear(inplanes, planes, bias=False)
else:
return nn.Identity()
class TextCLIP(nn.Module):
def __init__(self, config=None, inplanes=1024, planes=1024, head_type='identy'):
super(TextCLIP, self).__init__()
self.model_txt = MBartForConditionalGeneration.from_pretrained(config['model']['transformer']).get_encoder()
self.lm_head = make_head(inplanes, planes, head_type)
def forward(self, tgt_input):
txt_logits = self.model_txt(input_ids=tgt_input['input_ids'].cuda(), attention_mask=tgt_input['attention_mask'].cuda())[0]
output = txt_logits[torch.arange(txt_logits.shape[0]), tgt_input['input_ids'].argmax(dim=-1)]
return self.lm_head(output), txt_logits
class ImageCLIP(nn.Module):
def __init__(self, config, inplanes=1024, planes=1024, head_type='linear') :
super(ImageCLIP, self).__init__()
self.config = config
self.model = FeatureExtracter()
self.trans_encoder = MBartForConditionalGeneration.from_pretrained(config['model']['visual_encoder']).get_encoder()
self.cls_token = nn.Parameter(torch.randn(1, 1, inplanes))
self.lm_head = make_head(inplanes, planes, head_type)
def forward(self, src_input):
x = self.model(src_input['input_ids'].cuda(), src_input['src_length_batch']) # [b, n, c]
attention_mask = src_input['attention_mask']
B, N, C = x.shape
cls_token = repeat(self.cls_token, '() n d -> b n d', b=B)
x = torch.cat((cls_token, x), dim=1)
attention_mask = F.pad(attention_mask.flatten(1), (1, 0), value=1.) # [b, 64] --> [b, 65]
outs = self.trans_encoder(inputs_embeds=x, attention_mask=attention_mask.cuda(), return_dict=True)
last_hidden_state = outs['last_hidden_state']
output = self.lm_head(last_hidden_state[:, 0, :])
return output
class Text_Decoder(nn.Module):
def __init__(self, config):
super(Text_Decoder, self).__init__()
self.text_decoder = MBartForConditionalGeneration.from_pretrained(config['model']['visual_encoder']).get_decoder()
self.lm_head = MBartForConditionalGeneration.from_pretrained(config['model']['visual_encoder']).get_output_embeddings()
self.register_buffer("final_logits_bias", torch.zeros((1, MBartForConditionalGeneration.from_pretrained(config['model']['visual_encoder']).model.shared.num_embeddings)))
def forward(self, tgt_input, masked_tgt_input, model_txt):
with torch.no_grad():
_, encoder_hidden_states = model_txt(masked_tgt_input)
decoder_input_ids = shift_tokens_right(tgt_input['input_ids'].cuda(), self.text_decoder.config.pad_token_id)
decoder_out = self.text_decoder(
input_ids = decoder_input_ids,
attention_mask = tgt_input['attention_mask'].cuda(),
encoder_hidden_states = encoder_hidden_states,
encoder_attention_mask = masked_tgt_input['attention_mask'].cuda(),
return_dict = True,
)
lm_logits = self.lm_head(decoder_out[0]) + self.final_logits_bias
return lm_logits
class SLRCLIP(nn.Module):
def __init__(self, config, embed_dim=1024) :
super(SLRCLIP, self).__init__()
self.model_txt = TextCLIP(config, inplanes=embed_dim, planes=embed_dim)
self.model_images = ImageCLIP(config, inplanes=embed_dim, planes=embed_dim)
self.logit_scale = nn.Parameter(torch.ones([]) * np.log(1 / 0.07))
def get_model_txt(self):
return self.model_txt
@property
def get_encoder_hidden_states(self):
return self.encoder_hidden_states
def forward(self, src_input, tgt_input):
image_features = self.model_images(src_input)
text_features, self.encoder_hidden_states = self.model_txt(tgt_input)
# normalized features
image_features = image_features / image_features.norm(dim=-1, keepdim=True)
text_features = text_features / text_features.norm(dim=-1, keepdim=True)
# cosine similarity as logits
logit_scale = self.logit_scale.exp()
logits_per_image = logit_scale * image_features @ text_features.t()
logits_per_text = logit_scale * text_features @ image_features.t()
ground_truth = torch.eye(logits_per_image.shape[0], device=logits_per_text.device, dtype=logits_per_image.dtype, requires_grad=False)
return logits_per_image, logits_per_text, ground_truth
class FeatureExtracter(nn.Module):
def __init__(self, frozen=False):
super(FeatureExtracter, self).__init__()
self.conv_2d = resnet() # InceptionI3d()
self.conv_1d = TemporalConv(input_size=512, hidden_size=1024, conv_type=2)
if frozen:
for param in self.conv_2d.parameters():
param.requires_grad = False
def forward(self,
src: Tensor,
src_length_batch
):
src = self.conv_2d(src,src_length_batch)
src = self.conv_1d(src)
return src
class V_encoder(nn.Module):
def __init__(self,
emb_size,
feature_size,
config,
):
super(V_encoder, self).__init__()
self.config = config
self.src_emb = nn.Linear(feature_size, emb_size)
modules = []
modules.append(nn.BatchNorm1d(emb_size))
modules.append(nn.ReLU(inplace=True))
self.bn_ac = nn.Sequential(*modules)
for m in self.modules():
if isinstance(m, (nn.Conv1d,nn.Linear)):
nn.init.xavier_uniform_(m.weight, gain=nn.init.calculate_gain('relu'))
elif isinstance(m, nn.BatchNorm1d):
nn.init.constant_(m.weight, 1)
nn.init.constant_(m.bias, 0)
def forward(self,
src: Tensor,
):
src = self.src_emb(src)
src = self.bn_ac(src.permute(0,2,1)).permute(0,2,1)
return src
def config_decoder(config):
from transformers import AutoConfig
decoder_type = _('decoder_type', 'LD', choices=['LD', 'LLMD'])
if decoder_type == 'LD':
return MBartForConditionalGeneration.from_pretrained(config['model']['visual_encoder'], ignore_mismatched_sizes = True, config = AutoConfig.from_pretrained(Path(config['model']['visual_encoder'])/'config.json'))
elif decoder_type == 'LLMD':
return MBartForConditionalGeneration.from_pretrained(config['model']['transformer'], ignore_mismatched_sizes = True, config = AutoConfig.from_pretrained(Path(config['model']['transformer'])/'LLMD_config.json'))
class gloss_free_model(nn.Module):
def __init__(self, config, args, embed_dim=1024, pretrain=None):
super(gloss_free_model, self).__init__()
self.config = config
self.args = args
self.backbone = FeatureExtracter(frozen=_('freeze_backbone', False))
# self.mbart = MBartForConditionalGeneration.from_pretrained(config['model']['visual_encoder'])
self.mbart = config_decoder(config)
if config['model']['sign_proj']:
self.sign_emb = V_encoder(emb_size=embed_dim,feature_size=embed_dim, config = config)
self.embed_scale = math.sqrt(embed_dim) if config['training']['scale_embedding'] else 1.0
else:
self.sign_emb = nn.Identity()
self.embed_scale = 1.0
def share_forward(self, src_input):
frames_feature = self.backbone(src_input['input_ids'].cuda(), src_input['src_length_batch'])
attention_mask = src_input['attention_mask']
inputs_embeds = self.sign_emb(frames_feature)
inputs_embeds = self.embed_scale * inputs_embeds
return inputs_embeds, attention_mask
def forward(self,src_input, tgt_input ):
inputs_embeds, attention_mask = self.share_forward(src_input)
out = self.mbart(inputs_embeds = inputs_embeds,
attention_mask = attention_mask.cuda(),
# decoder_input_ids = tgt_input['input_ids'].cuda(),
labels = tgt_input['input_ids'].cuda(),
decoder_attention_mask = tgt_input['attention_mask'].cuda(),
return_dict = True,
)
return out['logits']
def generate(self,src_input,max_new_tokens,num_beams,decoder_start_token_id ):
inputs_embeds, attention_mask = self.share_forward(src_input)
out = self.mbart.generate(inputs_embeds = inputs_embeds,
attention_mask = attention_mask.cuda(),max_new_tokens=max_new_tokens,num_beams = num_beams,
decoder_start_token_id=decoder_start_token_id
)
return out