-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathCAM_visualization.py
327 lines (253 loc) · 9.68 KB
/
CAM_visualization.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
import copy
import os
import random
import numpy as np
import torch
# use apex
from apex import amp
from apex.parallel import DistributedDataParallel
# use pytorch ddp
# from torch.nn.parallel import DistributedDataParallel
from torch import distributed
from torch.utils import data
from torch.utils.data.distributed import DistributedSampler
import argparser
import tasks
import utils
from dataset import (AdeSegmentationIncremental,
CityscapesSegmentationIncrementalDomain,
VOCSegmentationIncremental, transform)
from metrics import StreamSegMetrics
from segmentation_module import make_model
from train import Trainer
from utils.logger import Logger
def save_ckpt(path, model, trainer, optimizer, scheduler, epoch, best_score):
""" save current model
"""
state = {
"epoch": epoch,
"model_state": model.state_dict(),
"optimizer_state": optimizer.state_dict(),
"scheduler_state": scheduler.state_dict(),
"best_score": best_score,
"trainer_state": trainer.state_dict()
}
torch.save(state, path)
def get_dataset(opts):
""" Dataset And Augmentation
"""
train_transform = transform.Compose(
[
transform.RandomResizedCrop(opts.crop_size, (0.5, 2.0)),
transform.RandomHorizontalFlip(),
transform.ToTensor(),
transform.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
]
)
if opts.crop_val:
val_transform = transform.Compose(
[
transform.Resize(size=opts.crop_size),
transform.CenterCrop(size=opts.crop_size),
transform.ToTensor(),
transform.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
]
)
else:
# no crop, batch size = 1
val_transform = transform.Compose(
[
transform.ToTensor(),
transform.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
]
)
labels, labels_old, path_base = tasks.get_task_labels(opts.dataset, opts.task, opts.step)
labels_cum = labels_old + labels
if opts.dataset == 'voc':
dataset = VOCSegmentationIncremental
elif opts.dataset == 'ade':
dataset = AdeSegmentationIncremental
elif opts.dataset == 'cityscapes_domain':
dataset = CityscapesSegmentationIncrementalDomain
else:
raise NotImplementedError
if opts.overlap:
path_base += "-ov"
if not os.path.exists(path_base):
os.makedirs(path_base, exist_ok=True)
train_dst = dataset(
root=opts.data_root,
train=True,
transform=train_transform,
labels=list(labels),
labels_old=list(labels_old),
idxs_path=path_base + f"/train-{opts.step}.npy",
masking=not opts.no_mask,
overlap=opts.overlap,
disable_background=opts.disable_background,
data_masking=opts.data_masking,
test_on_val=opts.test_on_val,
step=opts.step
)
### Fix for classifier warm up
tune_cls_dst = dataset(
root=opts.data_root,
train=True,
transform=train_transform,
labels=list(labels),
labels_old=list(labels_old),
idxs_path=path_base + f"/train-{opts.step}.npy",
masking=not opts.no_mask,
overlap=opts.overlap,
disable_background=opts.disable_background,
data_masking=opts.data_masking,
test_on_val=opts.test_on_val,
step=opts.step
)
if not opts.no_cross_val: # if opts.cross_val:
train_len = int(0.8 * len(train_dst))
val_len = len(train_dst) - train_len
train_dst, val_dst = torch.utils.data.random_split(train_dst, [train_len, val_len])
else: # don't use cross_val
val_dst = dataset(
root=opts.data_root,
train=False,
transform=val_transform,
labels=list(labels),
labels_old=list(labels_old),
idxs_path=path_base + f"/val-{opts.step}.npy",
masking=not opts.no_mask,
overlap=True,
disable_background=opts.disable_background,
data_masking=opts.data_masking,
step=opts.step
)
image_set = 'train' if opts.val_on_trainset else 'val'
test_dst = dataset(
root=opts.data_root,
train=opts.val_on_trainset,
transform=val_transform,
labels=list(labels_cum),
idxs_path=path_base + f"/test_on_{image_set}-{opts.step}.npy",
disable_background=opts.disable_background,
test_on_val=opts.test_on_val,
step=opts.step,
ignore_test_bg=opts.ignore_test_bg
)
return train_dst, tune_cls_dst, val_dst, test_dst, len(labels_cum)
def main(opts):
# pytorch 11.0+cu113
distributed.init_process_group(backend='nccl', init_method='env://')
device_id, device = opts.local_rank, torch.device(opts.local_rank)
rank, world_size = distributed.get_rank(), distributed.get_world_size()
torch.cuda.set_device(device_id)
os.makedirs("CAM_viz", exist_ok=True)
all_val_scores = []
for i, (step, lr) in enumerate(zip(copy.deepcopy(opts.step), copy.deepcopy(opts.lr))):
if i > 0:
opts.step_ckpt = None
opts.step = step
opts.lr = lr
val_score = run_step(opts, world_size, rank, device)
torch.cuda.empty_cache()
def run_step(opts, world_size, rank, device):
# Initialize logging
task_name = f"{opts.task}-{opts.dataset}"
logdir_full = f"{opts.logdir}/{task_name}/{opts.name}/"
if rank == 0:
logger = Logger(
logdir_full, rank=rank, debug=opts.debug, summary=opts.visualize, step=opts.step
)
else:
logger = Logger(logdir_full, rank=rank, debug=opts.debug, summary=False)
# Set up random seed
torch.manual_seed(opts.random_seed)
torch.cuda.manual_seed(opts.random_seed)
np.random.seed(opts.random_seed)
random.seed(opts.random_seed)
# xxx Set up dataloader
train_dst, tune_dst, val_dst, test_dst, n_classes = get_dataset(opts)
# reset the seed, this revert changes in random seed
random.seed(opts.random_seed)
val_loader = data.DataLoader(
val_dst,
batch_size=opts.batch_size if opts.crop_val else 1,
sampler=DistributedSampler(val_dst, num_replicas=world_size, rank=rank),
num_workers=opts.num_workers
)
opts.inital_nb_classes = tasks.get_per_task_classes(opts.dataset, opts.task, opts.step)[0]
step_checkpoint = None
if opts.fix_bn:
model.fix_bn()
if rank == 0 and opts.sample_num > 0:
sample_ids = np.random.choice(
len(val_loader), opts.sample_num, replace=False
) # sample idxs for visualization
logger.info(f"The samples id are {sample_ids}")
else:
sample_ids = None
label2color = utils.Label2Color(cmap=utils.color_map(opts.dataset)) # convert labels to images
denorm = utils.Denormalize(
mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]
) # de-normalization for original images
TRAIN = not opts.test
if opts.dataset == "cityscapes_domain":
val_metrics = StreamSegMetrics(opts.num_classes)
else:
val_metrics = StreamSegMetrics(n_classes)
# xxx From here starts the test code
logger.info("*** Test the model on all seen classes...")
# make data loader
test_loader = data.DataLoader(
test_dst,
batch_size=opts.batch_size if opts.crop_val else 1,
sampler=DistributedSampler(test_dst, num_replicas=world_size, rank=rank),
num_workers=opts.num_workers
)
# load best model
if True: #TRAIN:
# Always reloading model for now
# https://github.com/arthurdouillard/CVPR2021_PLOP/issues/3
model = make_model(
opts, classes=tasks.get_per_task_classes(opts.dataset, opts.task, opts.step)
)
# Put the model on GPU
# apex
if hasattr(model, "weight_new"):
model.weight_new = None
model.weight_old = None
model.new_bias = None
model.weight_new_bg = None
model.weight_old_bg = None
model = DistributedDataParallel(model.cuda(device))
ckpt = f"{opts.checkpoint}/{task_name}_{opts.name}_{opts.step}.pth"
checkpoint = torch.load(ckpt, map_location="cpu")
model.load_state_dict(checkpoint["model_state"])
logger.info(f"*** Model restored from {ckpt}")
del checkpoint
trainer = Trainer(model, None, device=device, opts=opts, step=opts.step)
model.eval()
_, val_score, _ = trainer.validate_for_CAM(
loader=test_loader, metrics=val_metrics, logger=logger, end_task=True, class_id=20 # 对第20个类别进行可视化
)
logger.print("Done test")
logger.info(val_metrics.to_str(val_score))
logger.add_table("Test_Class_IoU", val_score['Class IoU'])
logger.add_table("Test_Class_Acc", val_score['Class Acc'])
logger.add_figure("Test_Confusion_Matrix", val_score['Confusion Matrix'])
results = {}
results["T-IoU"] = val_score['Class IoU']
results["T-Acc"] = val_score['Class Acc']
logger.add_results(results)
logger.add_scalar("T_Overall_Acc", val_score['Overall Acc'], opts.step)
logger.add_scalar("T_MeanIoU", val_score['Mean IoU'], opts.step)
logger.add_scalar("T_MeanAcc", val_score['Mean Acc'], opts.step)
logger.close()
del model
return val_score
if __name__ == '__main__':
parser = argparser.get_argparser()
opts = parser.parse_args()
opts = argparser.modify_command_options(opts)
os.makedirs(f"{opts.checkpoint}", exist_ok=True)
main(opts)