-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathinventory.py
97 lines (86 loc) · 3.33 KB
/
inventory.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
# Make the inventory and compute statistics of formatted AutoDL datasets.
# Author: Adrien Pavao
# Date: 10 May 2019
import numpy as np
import pandas as pd
import tensorflow as tf
import os
import sys
from math import sqrt
INGESTION_PATH = '../autodl/codalab_competition_bundle/AutoDL_starting_kit/AutoDL_ingestion_program/'
sys.path.append(INGESTION_PATH)
from dataset import AutoDLDataset
DOMAINS = ['text'] #['image', 'video', 'text', 'time', 'tabular']
HEADER = 'name,domain,size,train_ratio,tensor_shape,output_size\n'
OUTPUT_FILE = 'inventory.csv'
def compute_statistics(dataset, domain='unknown'):
""" Compute statitics of the dataset.
:param dataset: return of load_dataset function
:return: a string (row) of statistics
"""
name, train, test, test_labels = dataset
metadata = train.metadata_
# TODO is_multilabel
train_size, test_size = metadata.size(), test.metadata_.size()
size = train_size + test_size
#print('train size')
#print(train_size)
#print('test size')
#print(test_size)
tensor_shape = metadata.get_tensor_shape()
tensor_shape = str(tensor_shape).replace(',', ';') # let's avoid commas because of CSV format
return'{},{},{},{},{},{}\n'.format(name,
domain,
size,
round(train_size/size, 3),
tensor_shape,
metadata.get_output_size())
def load_dataset(input_dir, name):
""" Load a TFRecords dataset (AutoDL format).
"""
input_dir = os.path.join(input_dir, name)
test_labels_file = os.path.join(input_dir, name+'.solution')
test_labels = np.array(pd.read_csv(test_labels_file, header=None, sep=' '))
data_dir = name + '.data'
train = AutoDLDataset(os.path.join(input_dir, data_dir, 'train'))
test = AutoDLDataset(os.path.join(input_dir, data_dir, 'test'))
return name, train, test, test_labels
def get_folders(input_dir):
""" Return the list of folders in a given directory.
"""
folders = os.listdir(input_dir)
# remove hidden files and files with extension (e.g. .zip)
folders = [x for x in folders if not '.' in x]
return folders
def write_csv(filename):
""" Loop over formatted datasets.
"""
output = open(filename, 'w')
output.write(HEADER)
for domain in DOMAINS:
print('\nDomain: {}\n'.format(domain))
input_dir = '../autodl-data/{}/formatted_datasets'.format(domain)
folders = get_folders(input_dir)
# for each dataset
for name in folders:
print(name)
try:
row = compute_statistics(load_dataset(input_dir, name), domain=domain)
print(row)
output.write(row)
except:
print('FAILED.\n')
output.write('{},{},FAILED,--,--,--\n'.format(name, domain))
output.close()
def print_statistics(input_dir, name):
""" Mini version of write_csv.
"""
row = compute_statistics(load_dataset(input_dir, name))
print(HEADER)
print(row)
def main():
write_csv(OUTPUT_FILE)
print_statistics('../autodl-data/tabular/formatted_datasets', 'adult')
#print_statistics('../autodl-data/video/formatted_datasets', 'Yolo')
if __name__ == "__main__":
main()