-
Notifications
You must be signed in to change notification settings - Fork 4
/
main.py
244 lines (203 loc) · 11.8 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
import os
import json
import time
import torch
import random
import datetime
import argparse
import numpy as np
import util.dist as dist
from pathlib import Path
from models import model_initializer
from datasets import dataloader_initializer
import util.misc as utils
from util.optim import optim_initializer
from util.evaluate import print_scores
from util.checkpoints import param_initializer, save_on_master
def get_args_parser():
parser = argparse.ArgumentParser("Set transformer detector", add_help=False)
# Training hyper-parameters
parser.add_argument("--lr", default=1e-4, type=float)
parser.add_argument("--lr_backbone", default=1e-5, type=float)
parser.add_argument("--lr_drop", default=40, type=int)
parser.add_argument("--weight_decay", default=1e-4, type=float)
parser.add_argument("--batch_size", default=2, type=int)
parser.add_argument("--epochs", default=50, type=int)
parser.add_argument("--optimizer", default="adam", type=str)
parser.add_argument("--clip_max_norm", default=0.1, type=float, help="gradient clipping max norm")
parser.add_argument("--accumulate_steps", default=1., type=float)
parser.add_argument("--eval_skip", default=1, type=int, help='do evaluation every "eval_skip" frames')
parser.add_argument("--debug", action="store_true")
parser.add_argument("--vis_and_log_interval", default=10, type=int)
parser.add_argument("--schedule", default="linear_with_warmup", type=str, choices=("step", "multistep", "linear_with_warmup", "all_linear_with_warmup"))
parser.add_argument("--ema", action="store_true")
parser.add_argument("--ema_decay", type=float, default=0.9998)
parser.add_argument("--fraction_warmup_steps", default=0.01, type=float, help="Fraction of total number of steps")
# Model parameters
parser.add_argument('--frozen_weights', type=str, default=None,
help="Path to the pretrained model. If set, only the mask head will be trained")
parser.add_argument('--roi_pool_type', default="avg", type=str)
# Backbone
parser.add_argument("--backbone", default="resnet101", type=str, help="Name of the convolutional backbone")
parser.add_argument('--dilation', action='store_true', help="If true, we replace stride with dilation in the last convolutional block (DC5)")
parser.add_argument("--position_embedding", default="sine", type=str, choices=("sine", "learned"), help="Type of positional embedding to use on top of the image features")
# Transformer
parser.add_argument("--enc_layers", default=6, type=int, help="Number of encoding layers in the transformer")
parser.add_argument("--dec_layers", default=6, type=int, help="Number of decoding layers in the transformer")
parser.add_argument("--dim_feedforward", default=2048, type=int, help="Intermediate size of the feedforward layers in the transformer blocks")
parser.add_argument("--hidden_dim", default=256, type=int, help="Size of the embeddings (dimension of the transformer)")
parser.add_argument("--dropout", default=0.1, type=float, help="Dropout applied in the transformer")
parser.add_argument("--nheads", default=8, type=int, help="Number of attention heads inside the transformer's attentions")
parser.add_argument("--num_queries", default=100, type=int, help="Number of object tokens")
parser.add_argument("--pre_norm", action="store_true")
# Loss
parser.add_argument('--no_aux_loss', dest='aux_loss', action='store_false', help="Disables auxiliary decoding losses (loss at each layer)")
# Run specific
parser.add_argument("--eval", action="store_true", help="Only run evaluation")
parser.add_argument("--eval_mode", default="evalGT")
parser.add_argument("--output-dir", default="", help="path where to save, empty for no saving")
parser.add_argument("--device", default="cuda", help="device to use for training / testing")
parser.add_argument("--seed", default=42, type=int)
parser.add_argument("--resume", default="", help="resume from checkpoint")
parser.add_argument("--resume_shift_neuron", action="store_true")
parser.add_argument("--pretrain", default="", help="load pretrain from checkpoint")
parser.add_argument("--start-epoch", default=0, type=int, metavar="N", help="start epoch")
parser.add_argument("--num_workers", default=0, type=int)
# Dataset Specific
parser.add_argument("--dataset_config", default=None, required=True)
# Distributed training parameters
parser.add_argument("--world-size", default=1, type=int, help="number of distributed processes")
parser.add_argument("--dist-url", default="env://", help="url used to set up distributed training")
parser.add_argument('--local_rank', default=-1, type=int)
# VidVRD
parser.add_argument("--stage", type=int, default=2)
parser.add_argument("--coco_path", type=str, default="")
parser.add_argument("--vidvrd_path", default="", type=str)
parser.add_argument("--num_verb_classes", default=132, type=int)
parser.add_argument("--num_obj_classes", default=35, type=int)
parser.add_argument("--max_duration", default=24, type=int)
parser.add_argument("--seq_len", default=8, type=int)
parser.add_argument("--resolution", default="large", type=str)
# Matcher
parser.add_argument('--set_cost_class', default=1, type=float, help="Class coefficient in the matching cost")
parser.add_argument('--set_cost_bbox', default=5, type=float, help="L1 box coefficient in the matching cost")
parser.add_argument('--set_cost_giou', default=2, type=float, help="giou box coefficient in the matching cost")
parser.add_argument('--set_cost_sub_class', default=0.5, type=float, help="Object class coefficient in the matching cost")
parser.add_argument('--set_cost_obj_class', default=0.5, type=float, help="Object class coefficient in the matching cost")
parser.add_argument('--set_cost_verb_class', default=1, type=float, help="Verb class coefficient in the matching cost")
# Loss coefficients
parser.add_argument("--obj_loss_coef", default=1, type=float)
parser.add_argument("--verb_loss_coef", default=1, type=float)
parser.add_argument('--bbox_loss_coef', default=5, type=float)
parser.add_argument('--giou_loss_coef', default=2, type=float)
parser.add_argument("--eos_coef", default=0.1, type=float, help="Relative classification weight of the no-object class")
# Tracking
parser.add_argument("--tracking", default=False)
parser.add_argument("--track_prev_frame_range", default=0, type=int)
parser.add_argument("--track_prev_frame_rnd_augs", default=0.01, type=float)
parser.add_argument("--track_query_false_positive_prob", default=0.1, type=float)
parser.add_argument("--track_query_false_negative_prob", default=0.4, type=float)
parser.add_argument("--track_query_false_positive_eos_weight", default=True)
parser.add_argument("--track_query_noise", default=0., type=float)
parser.add_argument("--track_prev_prev_frame", default=False)
parser.add_argument("--track_backprop_prev_frame", default=False)
parser.add_argument("--track_attention", action="store_true")
# Deformable
parser.add_argument("--deformable", action="store_true")
parser.add_argument("--num_feature_levels", default=1, type=int)
parser.add_argument("--with_box_refine", default=False)
parser.add_argument("--overflow_boxes", default=False)
parser.add_argument("--multi_frame_attention", default=False)
parser.add_argument("--multi_frame_encoding", default=False)
parser.add_argument("--merge_frame_features", default=False)
parser.add_argument("--multi_frame_attention_separate_encoder", default=False)
parser.add_argument("--dec_n_points", default=4, type=int)
parser.add_argument("--enc_n_points", default=4, type=int)
parser.add_argument("--focal_loss", default=False)
parser.add_argument("--focal_alpha", default=0.25, type=float)
parser.add_argument("--focal_gamma", default=2, type=float)
return parser
def main(args):
# Init distributed mode
dist.init_distributed_mode(args)
# Update dataset specific configs
if args.dataset_config is not None:
# https://stackoverflow.com/a/16878364
d = vars(args)
with open(args.dataset_config, "r") as f:
cfg = json.load(f)
d.update(cfg)
print("git:\n {}\n".format(dist.get_sha()))
device = torch.device(args.device)
if args.debug:
args.num_workers = 0
if not args.deformable:
assert args.num_feature_levels == 1
print(args)
if args.stage ==1:
from engine import train_stage1 as train_one_epoch
else:
from engine import train_stage2 as train_one_epoch
from engine import eval_stage2 as eval_one_epoch
output_dir = Path(args.output_dir)
if args.output_dir:
output_dir.mkdir(parents=True, exist_ok=True)
json.dump(vars(args), open(output_dir / 'config.json', 'w'))
# fix the seed for reproducibility
seed = args.seed + dist.get_rank()
os.environ['PYTHONHASHSEED'] = str(seed)
np.random.seed(seed)
random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
torch.backends.cudnn.deterministic = True
if int(torch.__version__.split(".")[1]) <= 8: # for torch version<=1.8
torch.set_deterministic(True)
model, model_without_ddp, criterion, n_parameters = model_initializer(args, device)
#visualizers = build_visualizers(args, list(criterion.weight_dict.keys()))
# Set up optimizers
optimizer = optim_initializer(args, model_without_ddp)
lr_scheduler = torch.optim.lr_scheduler.StepLR(optimizer, args.lr_drop)
param_initializer(args, model_without_ddp, optimizer, lr_scheduler)
data_loader_train, sampler_train, data_loader_val = dataloader_initializer(args)
if args.eval:
test_stats = eval_one_epoch(model, data_loader_val, device, 0, args)
print(test_stats)
return
print("Start training")
start_time = time.time()
for epoch in range(args.start_epoch, args.epochs):
if args.distributed:
sampler_train.set_epoch(epoch)
train_stats = train_one_epoch(
model, criterion, data_loader_train, optimizer, device, epoch, args)
lr_scheduler.step()
if args.output_dir:
checkpoint_paths = [output_dir / 'checkpoint.pth']
# extra checkpoint before LR drop and every 100 epochs
if (epoch + 1) % args.lr_drop == 0 or (epoch + 1) % 1 == 0:
checkpoint_paths.append(output_dir / f'checkpoint{epoch:04}.pth')
for checkpoint_path in checkpoint_paths:
save_on_master({
'model': model_without_ddp.state_dict(),
'optimizer': optimizer.state_dict(),
'lr_scheduler': lr_scheduler.state_dict(),
'epoch': epoch,
'args': args,
}, checkpoint_path)
test_stats = eval_one_epoch(model, data_loader_val, device, epoch, args)
print(test_stats)
log_stats = {**{f'train_{k}': v for k, v in train_stats.items()},
'epoch': epoch,
'n_parameters': n_parameters}
if args.output_dir and utils.is_main_process():
with (output_dir / "log.txt").open("a") as f:
f.write(json.dumps(log_stats) + "\n")
total_time = time.time() - start_time
total_time_str = str(datetime.timedelta(seconds=int(total_time)))
print('Training time {}'.format(total_time_str))
if __name__ == "__main__":
parser = argparse.ArgumentParser("VRDFormer training and evaluation script", parents=[get_args_parser()])
args = parser.parse_args()
os.environ["CUBLAS_WORKSPACE_CONFIG"] = ":4096:8"
main(args)