ssh -CY [email protected]
qsub -n 4 -q debug-cache-quad -A datascience -t 1:00:00 -I
Environment setup (setup_knl.sh)
# Loading TensorFlow / PyTorch module
module load datascience/tensorflow-2.3
# Loading Darshan
module load darshan
export DARSHAN_DISABLE_SHARED_REDUCTION=1
export DXT_ENABLE_IO_TRACE=4
export LD_PRELOAD="$DARSHAN_PRELOAD $LD_PRELOAD"
export DARSHAN_DIR=$(dirname $(dirname $DARSHAN_PRELOAD))
git clone [email protected]:zhenghh04/vanidl.git vanidl_src
cd vanidl_src
python setup.py build
python setup.py install --user
./aprun.wrapper -n 32 -N 8 python tensorflow2_keras_mnist.py --device cpu
This will generate the following example darshan output in the following directory /lus/theta-fs0/logs/darshan/theta/$(date +%Y/%-m/%-d)
Generating profiling results (more details, vanidl_profile.py)
import vanidl
from vanidl.analyzer import *
profile = VaniDL()
#Load darshan file
status = profile.Load("./res.darshan")
#Get Job Summary
summary = profile.GetSummary()
# Print high level summary
profile.PrintSummary()