-
Notifications
You must be signed in to change notification settings - Fork 10
/
Copy pathdecrese_reconfig_33_tabu.m
249 lines (217 loc) · 9.49 KB
/
decrese_reconfig_33_tabu.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
% core programme in decrese_reconfig_33.m already obtain optimal solution, no need to execute tabu
clear all, clc, close all
addpath('./code')
%% basic setting
tic
fprintf('decrease_reconfig_33_tabu.m \n')
warning('off')
addpath(pathdef)
mpopt = mpoption;
mpopt.out.all = 0; % do not print anything
mpopt.verbose = 0;
version_LODF = 0 % 1: use decrease_reconfig_algo_LODF.m
% 0: use decrease_reconfig_algo.m
candi_brch_bus = []; % candidate branch i added to bus j
% mpc0 = case33;
casei=4
d33zhu_v2
substation_node = 1; n_bus = 33;
n1 = 3
n2 = 5
n1_down_substation = n1+1; n2_up_ending = n2;
Branch0 = Branch;
brch_idx_in_loop0 = unique(brch_idx_in_loop(:));
%% original network's power flow (not radial)
% show_biograph(Branch, Bus)
from_to = show_biograph_not_sorted(Branch, substation_node, 0);
mpc = generate_mpc(Bus, Branch, n_bus);
res_orig = runpf(mpc, mpopt);
losses = get_losses(res_orig.baseMVA, res_orig.bus, res_orig.branch);
loss0 = sum(real(losses));
fprintf('case33_tabu: original loop network''s loss is %.5f \n\n', loss0)
% for each branch in a loop,
% if open that branch does not cause isolation, check the two ending buses
% of that branch for connectivity, realized by shortestpath or conncomp
% calculate the lowest loss increase, print out the sorted loss increase
% open the branch with lowest loss increase
% stop criterion: number of buses - number of branches = 1
%% ------------------------ Core algorithm ------------------------%%
ff0 = Branch(:, 1); ff = ff0;
tt0 = Branch(:, 2); tt = tt0;
t1 = toc;
if version_LODF
[Branch] = decrease_reconfig_algo_LODF(Bus, Branch, brch_idx_in_loop, ...
ff0, tt0, substation_node, n_bus, loss0); %%% core algorithm
else
[Branch] = decrease_reconfig_algo(Bus, Branch, brch_idx_in_loop, ff0, tt0, ...
substation_node, n_bus, loss0); %%% core algorithm
end
t2 = toc;
time_consumption.core = t2 - t1
% output of core algorithm
show_biograph = 0;
from_to = show_biograph_not_sorted(Branch(:, [1 2]), substation_node, ...
0);
from_to0 = from_to;
mpc = generate_mpc(Bus, Branch, n_bus);
res_pf_dec = runpf(mpc, mpopt);
losses = get_losses(res_pf_dec.baseMVA, res_pf_dec.bus, res_pf_dec.branch);
loss0_dec = sum(real(losses)); %
fprintf('case33_tabu: radial network obtained by my core algorithm''s loss is %.5f \n\n', loss0_dec)
Branch_loss_record = [];
% record Branch and loss
Branch_loss_record.core.Branch = Branch;
Branch_loss_record.core.loss = loss0_dec;
%% prepare force open branches for tabu: branch_idx_focused
[branch_idx_focused] = get_branch_idx_focused_for_tabu( ...
from_to, Branch0, Branch, substation_node, brch_idx_in_loop0, n_bus, ...
n1_down_substation, n2_up_ending);
%% ------------------------ Tabu algorithm ------------------------%%
% run the core program for each upstream branch connected to the idx_force_open
% idx_considered = [35 69]
% for iter = idx_considered
for iter = 1:length(branch_idx_focused)
fprintf('iter=%d/%d\n', iter, length(branch_idx_focused));
Branch = Branch0;
Branch(branch_idx_focused(iter), :) = [];
ff0 = Branch(:, 1); ff = ff0;
tt0 = Branch(:, 2); tt = tt0;
brch_idx_in_loop = brch_idx_in_loop0;
idx_tmp = find(brch_idx_in_loop == branch_idx_focused(iter));
if isempty(idx_tmp)
else
brch_idx_in_loop(idx_tmp) = [];
brch_idx_in_loop(idx_tmp:end) = brch_idx_in_loop(idx_tmp:end)-1;
end
t1 = toc;
%%------------------- core algorithm in Tabu loop--------------------%%
if version_LODF
[Branch] = decrease_reconfig_algo_LODF(Bus, Branch, brch_idx_in_loop, ...
ff0, tt0, substation_node, n_bus, loss0); %%% core algorithm
else
[Branch] = decrease_reconfig_algo(Bus, Branch, brch_idx_in_loop, ff0, tt0, ...
substation_node, n_bus, loss0); %%% core algorithm
end
t2 = toc;
time_consumption.tabu(iter) = t2-t1;
from_to = show_biograph_not_sorted(Branch(:, [1 2]), substation_node, ...
show_biograph); %%% show figure, take time
mpc = generate_mpc(Bus, Branch, n_bus);
t1 = toc;
res_pf = runpf(mpc, mpopt);
t2 = toc;
losses = get_losses(res_pf.baseMVA, res_pf.bus, res_pf.branch);
lossi = sum(real(losses)) % loss = 0.5364
loss_tabu(iter,1) = lossi;
yij_dec = generate_yij_from_Branch(Branch, Branch0);
% record Branch and loss
Branch_loss_record.tabu(iter,1).Branch = Branch;
Branch_loss_record.tabu(iter,1).loss = lossi;
[PQ, PV, REF, NONE, BUS_I, BUS_TYPE, PD, QD, GS, BS, BUS_AREA, VM, ...
VA, BASE_KV, ZONE, VMAX, VMIN, LAM_P, LAM_Q, MU_VMAX, MU_VMIN] = idx_bus;
% Vm = res_pf.bus(:, VM)';
% Va = res_pf.bus(:, VA)';
% ending_bus = find_ending_node(Branch, substation_node);
% [ending_bus'; Vm(ending_bus)];
%% ---------------------one open and one close---------------------%%
% prepare nodes_focused for one_open_one_close
t1 = toc;
[nodes_focused] = get_nodes_focused_o1c1( ...
from_to, Branch, Branch0, substation_node, brch_idx_in_loop, ...
n1_down_substation, n2_up_ending);
loss_before_switch0 = lossi;
[record_o1c1_loss_dec, loss_after_switch_combine_two_o1c1, Branch_loss] = ...
one_open_one_close(nodes_focused, Bus, Branch0, Branch, from_to, ...
substation_node, n_bus, loss_before_switch0);
t2 = toc;
time_consumption.tabu_o1c1(iter) = t2-t1;
% record Branch and loss
Branch_loss_record.tabu_o1c1_dec{iter}.Branch = Branch_loss.Branch_o1c1_dec;
% Branch_loss_record.tabu_o1c1_dec(iter,1).Branch = Branch_loss.Branch_o1c1_dec;
Branch_loss_record.tabu_o1c1_dec{iter}.loss = Branch_loss.loss_o1c1_dec;
Branch_loss_record.tabu_combine_2_o1c1_dec{iter}.Branch = ...
Branch_loss.Branch_after_switch_combine_two_o1c1;
Branch_loss_record.tabu_combine_2_o1c1_dec{iter}.loss = ...
Branch_loss.loss_after_switch_combine_two_o1c1;
min_loss_o1c1 = min(record_o1c1_loss_dec(:,1));
fprintf('case33_tabu: minimum loss obtained after ''one open and one close'': %.5f\n', ...
min_loss_o1c1);
min_loss_combine_two_o1c1 = 1e9;
fprintf('case33_tabu: loss obtained after combine two ''one open and one close'': \n')
for i = 1:length(loss_after_switch_combine_two_o1c1)
temp = min(loss_after_switch_combine_two_o1c1{i});
if temp<min_loss_combine_two_o1c1
min_loss_combine_two_o1c1 = temp;
end
fprintf(' %.5f \n', temp);
end
fprintf('case33_tabu: minimum loss obtained after combine two ''one open and one close'': %.5f \n', ...
min_loss_combine_two_o1c1)
%% ---------------------two open and two close---------------------%%
flag_2o2c = 0
if flag_2o2c == 1
t1 = toc;
loss_before_switch0 = lossi;
[record_o2c2_loss_dec, loss_after_switch_combine_two_o2c2] = ...
two_open_two_close(nodes_focused, Bus, Branch0, Branch, from_to, ...
substation_node, n_bus, loss_before_switch0);
t2 = toc;
time_consumption.tabu_o2c2(iter) = t2-t1;
min_loss_o2c2 = min(record_o2c2_loss_dec(:,1));
fprintf('case33_tabu: minimum loss obtained after ''two open and two close'': %.5f\n', ...
min_loss_o2c2);
min_loss_combine_two_o2c2 = 1e9;
fprintf('case33_tabu: loss obtained after combine two ''two open and two close'': \n')
for i = 1:length(loss_after_switch_combine_two_o2c2)
temp = min(loss_after_switch_combine_two_o2c2{i});
if temp<min_loss_combine_two_o2c2
min_loss_combine_two_o2c2 = temp;
end
fprintf(' %.5f \n', temp);
end
fprintf('case33_tabu: minimum loss obtained after combine two ''two open and two close'': %.5f \n', ...
min_loss_combine_two_o2c2)
res_save{iter}.min_loss_o2c2 = min_loss_o2c2;
res_save{iter}.min_loss_combine_two_o2c2 = min_loss_combine_two_o2c2;
end
res_save{iter}.yij_dec = yij_dec;
res_save{iter}.Branch = Branch;
res_save{iter}.lossi = lossi;
res_save{iter}.record_o1c1_loss_dec = record_o1c1_loss_dec;
res_save{iter}.min_loss_o1c1 = min_loss_o1c1;
res_save{iter}.min_loss_combine_two_o1c1 = min_loss_combine_two_o1c1;
% file_name = ['case33_yij_Branch_', num2str(idx_force_open(iter)), '.mat'];
% save(file_name, 'yij_dec', 'Branch', 'lossi');
file_name = ['id1_case33_yij_Branch', '.mat'];
save(file_name, 'res_save', 'branch_idx_focused', 'Branch_loss_record', ...
'time_consumption');
end
file_name = ['id1_case33_yij_Branch', '.mat'];
save(file_name, 'res_save', 'branch_idx_focused', 'Branch_loss_record', ...
'time_consumption');
% find_all_losses(Branch_loss_record);
fprintf('case33_tabu: losses obtained after applying tabu strategy: \n') % 0.28343 zjp 2018-1-18
fprintf('%.5f \n', loss_tabu)
fprintf('----- min: %.5f -----\n', min(loss_tabu))
min_loss = 1e9;
for i = 1:length(res_save)
if min_loss>res_save{i}.min_loss_o1c1
min_loss = res_save{i}.min_loss_o1c1 ;
end
if min_loss>res_save{i}.min_loss_combine_two_o1c1
min_loss = res_save{i}.min_loss_combine_two_o1c1 ;
end
end
min_loss_o1c1 = min_loss
if flag_2o2c == 1
min_loss = 1e9;
for i = 1:length(res_save)
if min_loss>res_save{i}.min_loss_o2c2
min_loss = res_save{i}.min_loss_o2c2 ;
end
if min_loss>res_save{i}.min_loss_combine_two_o2c2
min_loss = res_save{i}.min_loss_combine_two_o2c2 ;
end
end
min_loss_o2c2 = min_loss
end