-
Notifications
You must be signed in to change notification settings - Fork 1
/
entropy_MNIST.py
279 lines (256 loc) · 10 KB
/
entropy_MNIST.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
import os
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.utils.data import DataLoader
from torchvision.datasets import *
from torchvision.transforms.transforms import *
from torchvision.transforms.functional import *
from tqdm import tqdm
from torchplus.utils import Init
if __name__ == "__main__":
batch_size = 128
train_epoches = 100
class_num = 10
root_dir = "./logZZPMAIN.entropy"
target_pkl = "/path/to/target_classifier_mnist.pkl"
h = 32
w = 32
init = Init(
seed=9970,
log_root_dir=root_dir,
backup_filename=__file__,
tensorboard=True,
comment=f"MNIST entropy",
)
output_device = init.get_device()
writer = init.get_writer()
log_dir = init.get_log_dir()
data_workers = 2
transform = Compose(
[
Grayscale(num_output_channels=1),
Resize((h, w)),
ToTensor(),
]
)
mnist_train_ds = MNIST(
root="./data", train=True, transform=transform, download=True
)
mnist_test_ds = MNIST(
root="./data", train=False, transform=transform, download=True
)
mnist_train_ds_len = len(mnist_train_ds)
mnist_test_ds_len = len(mnist_test_ds)
train_ds = mnist_train_ds
test_ds = mnist_test_ds
train_ds_len = len(train_ds)
test_ds_len = len(test_ds)
print(train_ds_len)
print(test_ds_len)
# for train
train_dl = DataLoader(
dataset=train_ds,
batch_size=batch_size,
shuffle=False,
num_workers=data_workers,
drop_last=False,
pin_memory=True,
)
# for evaluate
test_dl = DataLoader(
dataset=test_ds,
batch_size=batch_size,
shuffle=False,
num_workers=data_workers,
drop_last=False,
pin_memory=True,
)
train_dl_len = len(train_dl)
test_dl_len = len(test_dl)
class Classifier(nn.Module):
def __init__(self, out_features):
super(Classifier, self).__init__()
self.out_features = out_features
self.conv1 = nn.Conv2d(1, 128, 3, 1, 1)
self.conv2 = nn.Conv2d(128, 256, 3, 1, 1)
self.conv3 = nn.Conv2d(256, 512, 3, 1, 1)
self.bn1 = nn.BatchNorm2d(128)
self.bn2 = nn.BatchNorm2d(256)
self.bn3 = nn.BatchNorm2d(512)
self.mp1 = nn.MaxPool2d(2, 2)
self.mp2 = nn.MaxPool2d(2, 2)
self.mp3 = nn.MaxPool2d(2, 2)
self.relu1 = nn.ReLU()
self.relu2 = nn.ReLU()
self.relu3 = nn.ReLU()
self.fc1 = nn.Linear(8192, 50)
self.dropout = nn.Dropout()
self.fc2 = nn.Linear(50, self.out_features)
def forward(self, x):
x = self.conv1(x)
x = self.bn1(x)
x = self.mp1(x)
x = self.relu1(x)
x = self.conv2(x)
x = self.bn2(x)
x = self.mp2(x)
x = self.relu2(x)
x = self.conv3(x)
x = self.bn3(x)
x = self.mp3(x)
x = self.relu3(x)
x = x.view(-1, 8192)
x = self.fc1(x)
x = self.dropout(x)
x = self.fc2(x)
return x
target_classifier = Classifier(class_num).train(False).to(output_device)
target_classifier.requires_grad_(False)
assert os.path.exists(target_pkl)
target_classifier.load_state_dict(
torch.load(open(target_pkl, "rb"), map_location=output_device)
)
with torch.no_grad():
for alpha in range(1, 21):
after_softmax_list_by_label = [[] for i in range(class_num)]
for i, (im, label) in enumerate(
tqdm(train_dl, desc=f"testing train {alpha}")
):
im = im.to(output_device)
label = label.to(output_device)
bs, c, h, w = im.shape
out = target_classifier.forward(im)
after_softmax = F.softmax(out, dim=-1)
after_softmax = after_softmax.pow(1 / alpha)
predict = torch.argmax(after_softmax, dim=-1)
for b in range(bs):
after_softmax_list_by_label[label[b]].append(after_softmax[b])
after_softmax_list_by_label = [
torch.stack(after_softmax_list_by_label[i]).cpu()
for i in range(class_num)
]
after_softmax_list_number = [
after_softmax_list_by_label[i].shape[0] for i in range(class_num)
]
after_softmax_number = sum(after_softmax_list_number)
after_softmax_list_number = [
after_softmax_list_number[i] / after_softmax_number
for i in range(class_num)
]
H = 0
for i in range(class_num):
after_softmax_list = after_softmax_list_by_label[i]
H_one_class = 0
for j in range(class_num):
after_softmax_j = after_softmax_list[:, j]
hist, bin_edges = torch.histogram(
after_softmax_j, bins=100, density=True
)
H_col = 0
for bin in range(bin_edges.shape[0] - 1):
if hist[bin] != 0:
H_col += (
-1
* hist[bin]
* torch.log2(hist[bin])
* (bin_edges[bin + 1] - bin_edges[bin])
)
H_one_class += H_col
H += H_one_class * after_softmax_list_number[i]
writer.add_scalar("entropy", H, alpha)
for alpha in range(2, 11):
after_softmax_list_by_label = [[] for i in range(class_num)]
for i, (im, label) in enumerate(
tqdm(train_dl, desc=f"testing train {alpha*10}")
):
im = im.to(output_device)
label = label.to(output_device)
bs, c, h, w = im.shape
out = target_classifier.forward(im)
after_softmax = F.softmax(out, dim=-1)
after_softmax = after_softmax.pow(1 / (alpha * 10))
predict = torch.argmax(after_softmax, dim=-1)
for b in range(bs):
after_softmax_list_by_label[label[b]].append(after_softmax[b])
after_softmax_list_by_label = [
torch.stack(after_softmax_list_by_label[i]).cpu()
for i in range(class_num)
]
after_softmax_list_number = [
after_softmax_list_by_label[i].shape[0] for i in range(class_num)
]
after_softmax_number = sum(after_softmax_list_number)
after_softmax_list_number = [
after_softmax_list_number[i] / after_softmax_number
for i in range(class_num)
]
H = 0
for i in range(class_num):
after_softmax_list = after_softmax_list_by_label[i]
H_one_class = 0
for j in range(class_num):
after_softmax_j = after_softmax_list[:, j]
hist, bin_edges = torch.histogram(
after_softmax_j, bins=100, density=True
)
H_col = 0
for bin in range(bin_edges.shape[0] - 1):
if hist[bin] != 0:
H_col += (
-1
* hist[bin]
* torch.log2(hist[bin])
* (bin_edges[bin + 1] - bin_edges[bin])
)
H_one_class += H_col
H += H_one_class * after_softmax_list_number[i]
writer.add_scalar("entropy", H, alpha * 10)
for alpha in range(1, 21):
after_softmax_list_by_label = [[] for i in range(class_num)]
for i, (im, label) in enumerate(
tqdm(train_dl, desc=f"testing train {alpha*100}")
):
im = im.to(output_device)
label = label.to(output_device)
bs, c, h, w = im.shape
out = target_classifier.forward(im)
after_softmax = F.softmax(out, dim=-1)
after_softmax = after_softmax.pow(1 / (alpha * 100))
predict = torch.argmax(after_softmax, dim=-1)
for b in range(bs):
after_softmax_list_by_label[label[b]].append(after_softmax[b])
after_softmax_list_by_label = [
torch.stack(after_softmax_list_by_label[i]).cpu()
for i in range(class_num)
]
after_softmax_list_number = [
after_softmax_list_by_label[i].shape[0] for i in range(class_num)
]
after_softmax_number = sum(after_softmax_list_number)
after_softmax_list_number = [
after_softmax_list_number[i] / after_softmax_number
for i in range(class_num)
]
H = 0
for i in range(class_num):
after_softmax_list = after_softmax_list_by_label[i]
H_one_class = 0
for j in range(class_num):
after_softmax_j = after_softmax_list[:, j]
hist, bin_edges = torch.histogram(
after_softmax_j, bins=100, density=True
)
H_col = 0
for bin in range(bin_edges.shape[0] - 1):
if hist[bin] != 0:
H_col += (
-1
* hist[bin]
* torch.log2(hist[bin])
* (bin_edges[bin + 1] - bin_edges[bin])
)
H_one_class += H_col
H += H_one_class * after_softmax_list_number[i]
writer.add_scalar("entropy", H, alpha * 100)
writer.close()