forked from naver/PoseGPT
-
Notifications
You must be signed in to change notification settings - Fork 0
/
classify.py
320 lines (265 loc) · 14.2 KB
/
classify.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
# Copyright (C) 2022-2023 Naver Corporation. All rights reserved.
# Licensed under CC BY-NC-SA 4.0 (non-commercial use only).
import os
import sys
from tqdm import tqdm
import numpy as np
import torch
from torch import nn
from argparse import ArgumentParser
import warnings
from torch.utils.tensorboard import SummaryWriter
import yaml
import time
from utils.stats import AverageMeter
from utils.checkpointing import get_last_checkpoint
from utils.ae_utils import red
from utils.data import get_data_loaders
from sklearn.metrics import average_precision_score as AP
from models.classifiers import TransformerDiscriminator, bm_classifier
from utils.param_count import print_parameters_count
import smplx
from utils.constants import SMPLX_DIR
from threed.skeleton import get_smplx_pose, get_smplh_pose, get_smpl_pose
if not sys.warnoptions:
warnings.simplefilter("ignore")
def freeze(model):
for param in model.parameters():
param.requires_grad = False
class CTrainer(nn.Module):
def __init__(self, *, save_dir, name, learning_rate, log_every_n_iter,
val_freq, ckpt_freq, restart_ckpt_freq, n_iters_per_epoch,
max_epochs, device, classifier, do_logging=True,
extra_log_tag=None, data_type=None, ckpt_num=''):
super(CTrainer, self).__init__()
self.device = device
self.extra_log_tag = extra_log_tag
self.classifier = classifier
self.classifier.to(device)
multi = data_type is not None and ('humanact' in data_type or 'grab' in data_type)
self.criterion = nn.CrossEntropyLoss() if multi else nn.BCEWithLogitsLoss()
self.optimizer = torch.optim.Adam(self.parameters(), lr=learning_rate)
self.save_dir, self.name = save_dir, name
self.log_every_n_iter = min(log_every_n_iter, n_iters_per_epoch)
self.do_logging = do_logging
self.val_freq, self.ckpt_freq = val_freq, ckpt_freq
self.restart_ckpt_freq = restart_ckpt_freq
self.n_iters_per_epoch, self.max_epochs = n_iters_per_epoch, max_epochs
self.ckpt_num = ckpt_num
self.classif_method = classifier.method
# Loading weights if they are available
self.init_logdir()
checkpoint, ckpt_path = get_last_checkpoint(save_dir, name + '/classification_' + self.classif_method)
if checkpoint is not None:
self.classifier.load_state_dict(checkpoint['model_state_dict'])
self.current_iter, self.current_epoch = 0, 0
def init_logdir(self):
""" Create the log dir space and associated subdirs """
log_dir_root = os.path.join(self.save_dir, self.name, 'classification_' + self.classif_method)
if len(self.ckpt_num) > 0:
log_dir_root = os.path.join(log_dir_root, self.ckpt_num)
self.log_dir = log_dir_root
os.makedirs(log_dir_root, exist_ok=True)
self.ckpt_dir = os.path.join(self.log_dir, 'checkpoints')
os.makedirs(self.ckpt_dir, exist_ok=True)
if self.do_logging:
self.writer = SummaryWriter(self.log_dir)
def save_ckpt(self, name, epoch, extra_dict={}):
weights = {k: v for k,v in self.classifier.state_dict().items() if not 'bm.' in k}
to_save = {'iter': self.current_iter, 'model_state_dict': weights,
'optimizer_state_dict': self.optimizer.state_dict(), 'epoch': epoch}
to_save.update(extra_dict)
torch.save(to_save, os.path.join(self.ckpt_dir, name))
def fit(self, data_train, data_val):
"""
Train and evaluate a model using training and validation data
"""
best_val = -1e5
self.current_iter = 0
self.current_epoch = 0
for epoch in range(1, self.max_epochs):
sys.stdout.flush()
print(f"\nEPOCH={epoch:03d}/{self.max_epochs} - ITER={self.current_iter}")
self.train_n_iters(data_train)
# Validation and checkpointing
if epoch % self.val_freq == 0 and (epoch > 0 or self.val_freq == 1):
val = self.evaluate(data_val)
if val > best_val:
self.save_ckpt('best.pt', epoch, {'pve': val})
best_val = val.item()
if epoch % self.ckpt_freq == 0 and (epoch > 0 or self.ckpt_freq == 1):
self.save_ckpt("ckpt_" + str(epoch) + ".pt", epoch)
if epoch % self.restart_ckpt_freq == 0 and (epoch > 0 or self.restart_ckpt_freq == 1):
self.save_ckpt("ckpt_restart.pt", epoch)
self.current_epoch += 1
return best_val
def log_train_stats(self, bce):
if self.do_logging:
for k, v in zip(["train/bce"], [bce.avg]):
self.writer.add_scalar(k, v, self.current_iter)
def train_n_iters(self, data_train):
""" Train for one epoch """
self.train()
bce, data_time, batch_time = [AverageMeter(k, ':6.3f') for k in ['Bce', 'data_time', 'batch_time']]
end = time.time()
print(red("> Training classifier ..."))
for x, valid, y in tqdm(data_train):
x, valid, y = x.to(self.device), valid.to(self.device), y.to(self.device)
data_time.update(time.time() - end)
logits = self.classifier(x, valid)
assert len(logits.shape) == 2, "unexpected shape"
target = torch.nonzero(y)[:, 1].long() if isinstance(self.criterion, nn.CrossEntropyLoss) else y.float()
loss = self.criterion(logits, target)
self.optimizer.zero_grad()
loss.backward()
self.optimizer.step()
batch_time.update(time.time() - end)
end = time.time()
bce.update(loss)
self.current_iter += 1
if not self.current_iter % self.log_every_n_iter:
self.log_train_stats(bce)
print(f"TRAIN:")
self.log_train_stats(bce)
self.writer.add_scalar(f"gpu_load/batch_time", batch_time.avg, self.current_iter)
self.writer.add_scalar(f"gpu_load/it_per_sec", 1. / batch_time.avg, self.current_iter)
self.writer.add_scalar(f"gpu_load/data_time", data_time.avg, self.current_iter)
def evaluate(self, data_val):
self.eval()
self.classifier.eval()
return evaluate_classifier(data_val, self.classifier, self.do_logging,
self.writer, self.current_iter, self.device, self.extra_log_tag)
@staticmethod
def add_trainer_specific_args(parent_parser):
parser = ArgumentParser(parents=[parent_parser], add_help=False)
parser.add_argument("--learning_rate", "-lr", type=float, default=1e-5)
parser.add_argument("--train_batch_size", "-b_train", type=int, default=32)
parser.add_argument("--val_batch_size", "-b_val", type=int, default=32)
return parser
@torch.no_grad()
def evaluate_classifier(data_val, classifier, do_logging, writer,
current_iter, device, extra_log_tag=None,
data_type=None):
""" Given a classifier and some data, compute the accuracy / mAP."""
print(red("> Evaluating classifier ..."))
multi_class = data_type is None or 'babel' in data_type
targets, scores = [], []
for x, valid, y in tqdm(data_val):
x, valid, y = x.to(device), valid.to(device), y.to(device)
output = classifier(x, valid)
logits = output if not isinstance(output, (list, tuple)) else output[0]
batch_scores = torch.sigmoid(logits) if multi_class else torch.nn.functional.softmax(logits)
scores.append(batch_scores.cpu())
targets.append(y.cpu())
scores, targets = [torch.cat(x).numpy() for x in [scores, targets]]
# average precision for each class
APs = [np.nan_to_num(AP(targets[:, k], scores[:, k])) for k in range(targets.shape[1])]
mAP = np.asarray(APs).mean() * 100.
if do_logging:
tag = "val_mAP" + (extra_log_tag if extra_log_tag is not None else '')
writer.add_scalar(tag, mAP, current_iter)
print(f"VAL:")
print(f" - mAP: {mAP:.3f}")
return mAP
def build_AR(mlp_dim, nb_classes, smpl_input=True, gru_dim=256, **kwargs):
input_dim = 168 if smpl_input else 381
return Autoreg_classifier(input_dim=input_dim, gru_dim=gru_dim,
mlp_dim=mlp_dim, nb_classes=nb_classes)
def build_TR(device, smpl_input=True, cut_joints=None):
input_dim = 168 if smpl_input else (381 if not cut_joints else 3 * cut_joints)
return TransformerDiscriminator(device=device, in_dim=input_dim)
def build_classifier(args, data_type, device, smpl_input=True, cut_joints=None):
if args.classif_method == 'TR':
classifier = build_TR(device, smpl_input=smpl_input, cut_joints=cut_joints)
else:
raise NotImplementedError("Unknown classifier")
classifier.method = args.classif_method
return classifier
def train_classifier(*, device, save_dir, name, loader_train,
classifier, loader_val, learning_rate=1e-5, val_freq=5,
ckpt_freq=50, restart_ckpt_freq=25,
log_every_n_iter=-1, n_iters_per_epoch=1000,
max_epochs=1000000,
do_logging=True, extra_log_tag=None,
data_type=None, **kwargs):
# Trainer
print(f"\nSetting up the trainer for action recognition...")
trainer = CTrainer(classifier=classifier, save_dir=save_dir, name=name, learning_rate=learning_rate,
log_every_n_iter=log_every_n_iter, val_freq=val_freq, ckpt_freq=ckpt_freq,
restart_ckpt_freq=restart_ckpt_freq, n_iters_per_epoch=n_iters_per_epoch,
max_epochs=max_epochs, device=device, do_logging=do_logging, extra_log_tag=extra_log_tag,
data_type=data_type)
if 'pretrained_ckpt' not in list(kwargs.keys()):
kwargs['pretrained_ckpt'] = None
if 'eval_only' not in list(kwargs.keys()):
kwargs['eval_only'] = False
if kwargs['pretrained_ckpt'] is not None:
checkpoint = torch.load(kwargs['pretrained_ckpt'])
missing, unexpected = trainer.classifier.load_state_dict(checkpoint['model_state_dict'], strict=False)
assert len(missing) == 0, "Missing keys"
assert len(unexpected) == 0, "Unexpected keys"
if kwargs['eval_only']:
return trainer.evaluate(data_val=loader_val)
else:
return trainer.fit(data_train=loader_train, data_val=loader_val)
def main(args=None):
torch.multiprocessing.set_sharing_strategy('file_system')
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
parser = ArgumentParser()
parser.add_argument("--max_epochs", type=int, default=150)
#parser.add_argument("--data_device", type=str, default='cpu', choices=['cpu', 'cuda'])
parser.add_argument("--debug", type=int, default=0, choices=[0, 1])
parser.add_argument("--n_iters_per_epoch", "-iter", type=int, default=1000)
parser.add_argument("--num_workers", "-j", type=int, default=16)
parser.add_argument("--overfit", type=int, default=0)
parser.add_argument("--data_augment", type=int, default=1, choices=[0, 1])
parser.add_argument("--dummy", type=int, default=0, choices=[0, 1])
parser.add_argument("--sample_start", type=int, default=1, choices=[0, 1])
parser.add_argument("--prefetch_factor", type=int, default=2)
parser.add_argument("--log_every_n_iter", "-log_it", type=int, default=400)
parser.add_argument("--val_freq", type=int, default=1)
parser.add_argument("--ckpt_freq", type=int, default=300)
parser.add_argument("--restart_ckpt_freq", type=int, default=50)
parser.add_argument("--train_data_dir", type=str,
default='data/smplx/babel_trimmed/train_60/seqLen900_fps30_overlap0_minSeqLen16')
parser.add_argument("--val_data_dir", type=str,
default='data/smplx/babel_trimmed/val_60/seqLen900_fps30_overlap0_minSeqLen16')
parser.add_argument("--save_dir", type=str, default='logs')
parser.add_argument("--name", type=str, default='debug_eval')
parser.add_argument("--n_iter_val", type=int, default=None)
# Classifier parameters
parser.add_argument("--mlp_dim", type=int, default=120)
parser.add_argument("--gru_dim", type=int, default=256)
parser.add_argument("--use_last", type=int, default=1, choices=[0,1])
parser.add_argument("--classif_method", type=str, default='AR', choices=['AR', 'AMD', 'TR'])
parser.add_argument("--use_bm", type=int, default=0, choices=[0,1])
parser.add_argument("--seq_len", type=int, default=64)
parser.add_argument("--joints_parallel", type=int, default=1, choices=[0, 1])
parser.add_argument("--proportion", type=float, default=0.2)
parser.add_argument("--pretrained_ckpt", type=str, default=None)
parser.add_argument("--eval_only", type=int, default=0, choices=[0, 1])
parser.add_argument("--cut_joints", type=int, default=None)
parser.add_argument("--center_at_pelvis", type=int, default=1, choices=[0,1])
parser = CTrainer.add_trainer_specific_args(parser)
args = parser.parse_args(args)
params_root = os.path.join(args.save_dir, args.name, 'classification_' + args.classif_method)
os.makedirs(params_root, exist_ok=True)
with open(os.path.join(params_root, 'hparams.yaml'), 'w') as f:
yaml.dump(vars(args), f, default_flow_style=False)
loader_train, loader_val = get_data_loaders(args)
data_types = ['humanact', 'babel', 'grab']
matching = [k for k in data_types if k in loader_train.dataset.data_dir]
assert len(matching) == 1, "Unknown data type"
data_type = matching[0]
classifier = build_classifier(args, data_type, device,
smpl_input=not args.use_bm,
cut_joints=args.cut_joints)
if args.use_bm:
classifier = bm_classifier(classifier, time_dim=64, proportion=args.proportion,
batch_size=32, device=device, cut_joints=args.cut_joints,
center_at_pelvis=args.center_at_pelvis)
print_parameters_count(classifier, detailed=0)
train_classifier(classifier=classifier, device=device, loader_train=loader_train,
loader_val=loader_val, data_type=data_type, **vars(args))
if __name__ == "__main__":
main()