-
Notifications
You must be signed in to change notification settings - Fork 12
/
Copy pathrun.py
693 lines (593 loc) · 26 KB
/
run.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
import copy
import os
import random
import torch.nn as nn
import numpy as np
import torch
from apex import amp
from apex.parallel import DistributedDataParallel
from torch import distributed
from torch.utils import data
from torch.utils.data.distributed import DistributedSampler
import argparser
import tasks
import utils
from dataset import (AdeSegmentationIncremental,
CityscapesSegmentationIncrementalDomain,
VOCSegmentationIncremental, transform)
from metrics import StreamSegMetrics
from segmentation_module import make_model
from train import Trainer
from utils.logger import Logger
####### merged branches ####### begin xjw fixed
def merge(conv2d, bn2d, conv_bias=None):
if conv_bias is not None:
conv_bias = conv_bias.clone().to(conv2d.weight.device)
k = conv2d.weight.clone()
running_mean = bn2d.running_mean
running_var = bn2d.running_var
eps = bn2d.eps
gamma = bn2d.weight.abs() + eps
beta = bn2d.bias
gamma = gamma / 2.
beta = beta / 2.
std = (running_var + eps).sqrt()
t = (gamma / std).reshape(-1, 1, 1, 1)
if conv_bias is not None:
return k * t, beta - running_mean * gamma / std + t.view(-1) * conv_bias.view(-1)
else:
return k * t, beta - running_mean * gamma / std
def mergex(conv2d, bn2d, pos, conv_bias=None):
if conv_bias is not None:
conv_bias = conv_bias.clone().to(conv2d.weight.device)
k = conv2d.weight.clone()
running_mean = bn2d.running_mean[pos*256:(1+pos)*256]
running_var = bn2d.running_var[pos*256:(1+pos)*256]
eps = bn2d.eps
gamma = bn2d.weight.abs()[pos*256:(1+pos)*256] + eps
beta = bn2d.bias[pos*256:(1+pos)*256]
gamma = gamma / 2.
beta = beta / 2.
std = (running_var + eps).sqrt()
t = (gamma / std).reshape(-1, 1, 1, 1)
if conv_bias is not None:
return k * t, beta - running_mean * gamma / std + t.view(-1) * conv_bias.view(-1)
else:
return k * t, beta - running_mean * gamma / std
def init_right(conv2d, bn2d, conv2d_new, bn2d_new, init_type):
if init_type == 'original':
return conv2d_new, bn2d_new
return conv2d_new, bn2d_new
def convert_model(model, load_dict=None):
for name, mm in model.named_modules():
if hasattr(mm, 'convs'):
k1, b1 = merge(mm.convs.conv2, mm.convs.bn2, mm.convs.conv2.bias.data)
k2, b2 = merge(mm.convs.conv2_new, mm.convs.bn2_new, None)
k = k1 + k2
b = b1 + b2
mm.convs.conv2.weight.data[:,:,:,:] = k[:,:,:,:]
mm.convs.conv2.bias = nn.Parameter(b)
mm.convs.bn2.bias.data[:] = torch.zeros((mm.convs.bn2.weight.shape[0],))[:]
mm.convs.bn2.running_var.data[:] = torch.ones((mm.convs.bn2.weight.shape[0],))[:]
mm.convs.bn2.eps = 0
mm.convs.bn2.weight.data[:] = torch.ones((mm.convs.bn2.weight.shape[0],))[:]
mm.convs.bn2.running_mean.data[:] = torch.zeros((mm.convs.bn2.weight.shape[0],))[:]
mm.convs.bn2.eval()
mm.convs.conv2.eval()
for p in mm.convs.bn2.parameters():
p.requires_grad = False
for p in mm.convs.conv2.parameters():
p.requires_grad = False
elif hasattr(mm, 'map_convs'):
for i in range(4):
k1, b1 = mergex(mm.map_convs[i], mm.map_bn, i, mm.map_convs[i].bias.data)
k2, b2 = mergex(mm.map_convs_new[i], mm.map_bn_new, i, None)
k = k1 + k2
b = b1 + b2
mm.map_convs[i].weight.data[:,:,:,:] = k[:,:,:,:]
mm.map_convs[i].bias = nn.Parameter(b)
mm.map_convs[i].eval()
for p in mm.map_convs[i].parameters():
p.requires_grad = False
mm.map_bn.eval()
for p in mm.map_bn.parameters():
p.requires_grad = False
mm.map_bn.bias.data[:] = torch.zeros((mm.map_bn.weight.shape[0],))[:]
mm.map_bn.running_var.data[:] = torch.ones((mm.map_bn.weight.shape[0],))[:]
mm.map_bn.eps = 0
mm.map_bn.weight.data[:] = torch.ones((mm.map_bn.weight.shape[0],))[:]
mm.map_bn.running_mean.data[:] = torch.zeros((mm.map_bn.weight.shape[0],))[:]
return model
####### merged branches ####### end
#################################################################
def save_ckpt(path, model, trainer, optimizer, scheduler, epoch, best_score):
""" save current model
"""
state = {
"epoch": epoch,
"model_state": model.state_dict(),
"optimizer_state": optimizer.state_dict(),
"scheduler_state": scheduler.state_dict(),
"best_score": best_score,
"trainer_state": trainer.state_dict()
}
torch.save(state, path)
def get_dataset(opts):
""" Dataset And Augmentation
"""
train_transform = transform.Compose(
[
transform.RandomResizedCrop(opts.crop_size, (0.5, 2.0)),
transform.RandomHorizontalFlip(),
transform.ToTensor(),
transform.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
]
)
if opts.crop_val:
val_transform = transform.Compose(
[
transform.Resize(size=opts.crop_size),
transform.CenterCrop(size=opts.crop_size),
transform.ToTensor(),
transform.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
]
)
else:
# no crop, batch size = 1
val_transform = transform.Compose(
[
transform.ToTensor(),
transform.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
]
)
labels, labels_old, path_base = tasks.get_task_labels(opts.dataset, opts.task, opts.step)
labels_cum = labels_old + labels
if opts.dataset == 'voc':
dataset = VOCSegmentationIncremental
elif opts.dataset == 'ade':
dataset = AdeSegmentationIncremental
elif opts.dataset == 'cityscapes_domain':
dataset = CityscapesSegmentationIncrementalDomain
else:
raise NotImplementedError
if opts.overlap:
path_base += "-ov"
if not os.path.exists(path_base):
os.makedirs(path_base, exist_ok=True)
train_dst = dataset(
root=opts.data_root,
train=True,
transform=train_transform,
labels=list(labels),
labels_old=list(labels_old),
idxs_path=path_base + f"/train-{opts.step}.npy",
masking=not opts.no_mask,
overlap=opts.overlap,
disable_background=opts.disable_background,
data_masking=opts.data_masking,
test_on_val=opts.test_on_val,
step=opts.step
)
if not opts.no_cross_val: # if opts.cross_val:
train_len = int(0.8 * len(train_dst))
val_len = len(train_dst) - train_len
train_dst, val_dst = torch.utils.data.random_split(train_dst, [train_len, val_len])
else: # don't use cross_val
val_dst = dataset(
root=opts.data_root,
train=False,
transform=val_transform,
labels=list(labels),
labels_old=list(labels_old),
idxs_path=path_base + f"/val-{opts.step}.npy",
masking=not opts.no_mask,
overlap=True,
disable_background=opts.disable_background,
data_masking=opts.data_masking,
step=opts.step
)
image_set = 'train' if opts.val_on_trainset else 'val'
test_dst = dataset(
root=opts.data_root,
train=opts.val_on_trainset,
transform=val_transform,
labels=list(labels_cum),
idxs_path=path_base + f"/test_on_{image_set}-{opts.step}.npy",
disable_background=opts.disable_background,
test_on_val=opts.test_on_val,
step=opts.step,
ignore_test_bg=opts.ignore_test_bg
)
return train_dst, val_dst, test_dst, len(labels_cum)
def main(opts):
distributed.init_process_group(backend='nccl', init_method='env://')
device_id, device = opts.local_rank, torch.device(opts.local_rank)
rank, world_size = distributed.get_rank(), distributed.get_world_size()
torch.cuda.set_device(device_id)
if len(opts.lr) == 1 and len(opts.step) > 1:
opts.lr = opts.lr * len(opts.step)
os.makedirs("results", exist_ok=True)
print(f"Learning for {len(opts.step)} with lrs={opts.lr}.")
all_val_scores = []
for i, (step, lr) in enumerate(zip(copy.deepcopy(opts.step), copy.deepcopy(opts.lr))):
if i > 0:
opts.step_ckpt = None
opts.step = step
opts.lr = lr
val_score = run_step(opts, world_size, rank, device)
if rank == 0:
all_val_scores.append(val_score)
torch.cuda.empty_cache()
if rank == 0:
with open(f"results/{opts.date}_{opts.dataset}_{opts.task}_{opts.name}.csv", "a+") as f:
classes_iou = ','.join(
[str(val_score['Class IoU'].get(c, 'x')) for c in range(opts.num_classes)]
)
f.write(f"{step},{classes_iou},{val_score['Mean IoU']}\n")
def run_step(opts, world_size, rank, device):
# Initialize logging
task_name = f"{opts.task}-{opts.dataset}"
logdir_full = f"{opts.logdir}/{task_name}/{opts.name}/"
if rank == 0:
logger = Logger(
logdir_full, rank=rank, debug=opts.debug, summary=opts.visualize, step=opts.step
)
else:
logger = Logger(logdir_full, rank=rank, debug=opts.debug, summary=False)
logger.print(f"Device: {device}")
# Set up random seed
torch.manual_seed(opts.random_seed)
torch.cuda.manual_seed(opts.random_seed)
np.random.seed(opts.random_seed)
random.seed(opts.random_seed)
# xxx Set up dataloader
train_dst, val_dst, test_dst, n_classes = get_dataset(opts)
# reset the seed, this revert changes in random seed
random.seed(opts.random_seed)
train_loader = data.DataLoader(
train_dst,
batch_size=opts.batch_size,
sampler=DistributedSampler(train_dst, num_replicas=world_size, rank=rank),
num_workers=opts.num_workers,
drop_last=True
)
val_loader = data.DataLoader(
val_dst,
batch_size=opts.batch_size if opts.crop_val else 1,
sampler=DistributedSampler(val_dst, num_replicas=world_size, rank=rank),
num_workers=opts.num_workers
)
logger.info(
f"Dataset: {opts.dataset}, Train set: {len(train_dst)}, Val set: {len(val_dst)},"
f" Test set: {len(test_dst)}, n_classes {n_classes}"
)
logger.info(f"Total batch size is {opts.batch_size * world_size}")
# xxx Set up model
logger.info(f"Backbone: {opts.backbone}")
opts.inital_nb_classes = tasks.get_per_task_classes(opts.dataset, opts.task, opts.step)[0]
step_checkpoint = None
model = make_model(opts, classes=tasks.get_per_task_classes(opts.dataset, opts.task, opts.step))
logger.info(f"[!] Model made with{'out' if opts.no_pretrained else ''} pre-trained")
if opts.step == 0: # if step 0, we don't need to instance the model_old
model_old = None
else: # instance model_old
model_old = make_model(
opts, classes=tasks.get_per_task_classes(opts.dataset, opts.task, opts.step - 1)
)
if opts.fix_bn:
model.fix_bn()
logger.debug(model)
# xxx Set up optimizer
params = []
if not opts.freeze:
params.append(
{
"params": filter(lambda p: p.requires_grad, model.body.parameters()),
'weight_decay': opts.weight_decay
}
)
params.append(
{
"params": filter(lambda p: p.requires_grad, model.head.parameters()),
'weight_decay': opts.weight_decay
}
)
if opts.lr_old is not None and opts.step > 0:
params.append(
{
"params": filter(lambda p: p.requires_grad, model.cls[:-1].parameters()),
'weight_decay': opts.weight_decay,
"lr": opts.lr_old * opts.lr
}
)
params.append(
{
"params": filter(lambda p: p.requires_grad, model.cls[-1:].parameters()),
'weight_decay': opts.weight_decay
}
)
else:
params.append(
{
"params": filter(lambda p: p.requires_grad, model.cls.parameters()),
'weight_decay': opts.weight_decay
}
)
if model.scalar is not None:
params.append({"params": model.scalar, 'weight_decay': opts.weight_decay})
optimizer = torch.optim.SGD(params, lr=opts.lr, momentum=0.9, nesterov=True)
if opts.lr_policy == 'poly':
scheduler = utils.PolyLR(
optimizer, max_iters=opts.epochs * len(train_loader), power=opts.lr_power
)
elif opts.lr_policy == 'step':
scheduler = torch.optim.lr_scheduler.StepLR(
optimizer, step_size=opts.lr_decay_step, gamma=opts.lr_decay_factor
)
else:
raise NotImplementedError
logger.debug("Optimizer:\n%s" % optimizer)
if model_old is not None:
[model, model_old], optimizer = amp.initialize(
[model.to(device), model_old.to(device)], optimizer, opt_level=opts.opt_level
)
model_old = DistributedDataParallel(model_old)
else:
model, optimizer = amp.initialize(model.to(device), optimizer, opt_level=opts.opt_level)
# Put the model on GPU
model = DistributedDataParallel(model, delay_allreduce=True)
# xxx Load old model from old weights if step > 0!
if opts.step > 0:
# get model path
if opts.step_ckpt is not None:
path = opts.step_ckpt
else:
path = f"{opts.checkpoint}/{task_name}_{opts.name}_{opts.step - 1}.pth"
# generate model from path
if os.path.exists(path):
step_checkpoint = torch.load(path, map_location="cpu")
### xjw fixed
for name, mm in model.named_modules():
if hasattr(mm, 'convs'):
mm.convs.conv2.bias = nn.Parameter(torch.zeros(mm.convs.conv2.weight.shape[0]).to(mm.convs.conv2.weight.device))
if hasattr(mm, 'map_convs'):
for kk in range(4):
mm.map_convs[kk].bias = nn.Parameter(torch.zeros(mm.map_convs[kk].weight.shape[0]).to(mm.map_convs[kk].weight.device))
model.load_state_dict(
step_checkpoint['model_state'], strict=False
) # False because of incr. classifiers
if opts.init_balanced:
# implement the balanced initialization (new cls has weight of background and bias = bias_bkg - log(N+1)
model.module.init_new_classifier(device)
elif opts.init_multimodal is not None:
model.module.init_new_classifier_multimodal(
device, train_loader, opts.init_multimodal
)
### xjw fixed
model = convert_model(model, None)
if opts.step > 1:
for name, mm in model_old.named_modules():
if hasattr(mm, 'convs'):
mm.convs.conv2.bias = nn.Parameter(torch.zeros(mm.convs.conv2.weight.shape[0]).to(mm.convs.conv2.weight.device))
if hasattr(mm, 'map_convs'):
for kk in range(4):
mm.map_convs[kk].bias = nn.Parameter(torch.zeros(mm.map_convs[kk].weight.shape[0]).to(mm.map_convs[kk].weight.device))
# Load state dict from the model state dict, that contains the old model parameters
model_old.load_state_dict(
step_checkpoint['model_state'], strict=opts.strict_weights
) # Load also here old parameters
logger.info(f"[!] Previous model loaded from {path}")
# clean memory
del step_checkpoint['model_state']
elif opts.debug:
logger.info(
f"[!] WARNING: Unable to find of step {opts.step - 1}! Do you really want to do from scratch?"
)
else:
raise FileNotFoundError(path)
# put the old model into distributed memory and freeze it
for par in model_old.parameters():
par.requires_grad = False
model_old.eval()
# xxx Set up Trainer
trainer_state = None
# if not first step, then instance trainer from step_checkpoint
if opts.step > 0 and step_checkpoint is not None:
if 'trainer_state' in step_checkpoint:
trainer_state = step_checkpoint['trainer_state']
# instance trainer (model must have already the previous step weights)
trainer = Trainer(
model,
model_old,
device=device,
opts=opts,
trainer_state=trainer_state,
classes=tasks.get_per_task_classes(opts.dataset, opts.task, opts.step),
step=opts.step
)
# xxx Handle checkpoint for current model (model old will always be as previous step or None)
best_score = 0.0
if opts.ckpt is not None and os.path.isfile(opts.ckpt):
checkpoint = torch.load(opts.ckpt, map_location="cpu")
model.load_state_dict(checkpoint["model_state"], strict=opts.strict_weights)
optimizer.load_state_dict(checkpoint["optimizer_state"])
scheduler.load_state_dict(checkpoint["scheduler_state"])
cur_epoch = checkpoint["epoch"] + 1
best_score = checkpoint['best_score']
logger.info("[!] Model restored from %s" % opts.ckpt)
# if we want to resume training, resume trainer from checkpoint
if 'trainer_state' in checkpoint:
trainer.load_state_dict(checkpoint['trainer_state'])
del checkpoint
else:
if opts.step == 0:
logger.info("[!] Train from scratch")
# xxx Train procedure
# print opts before starting training to log all parameters
logger.add_table("Opts", vars(opts))
if rank == 0 and opts.sample_num > 0:
sample_ids = np.random.choice(
len(val_loader), opts.sample_num, replace=False
) # sample idxs for visualization
logger.info(f"The samples id are {sample_ids}")
else:
sample_ids = None
label2color = utils.Label2Color(cmap=utils.color_map(opts.dataset)) # convert labels to images
denorm = utils.Denormalize(
mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]
) # de-normalization for original images
TRAIN = not opts.test
if opts.dataset == "cityscapes_domain":
val_metrics = StreamSegMetrics(opts.num_classes)
else:
val_metrics = StreamSegMetrics(n_classes)
results = {}
# check if random is equal here.
logger.print(torch.randint(0, 100, (1, 1)))
# train/val here
if TRAIN:
trainer.before(train_loader=train_loader, logger=logger)
for cur_epoch in range(opts.epochs):
# ===== Train =====
model.train()
### xjw fixed
if opts.step > 0:
for name, mm in model.named_modules():
if hasattr(mm, 'convs'):
for params in mm.convs.conv2.parameters(): params.requires_grad = False
for params in mm.convs.bn2.parameters(): params.requires_grad = False
mm.convs.bn2.eval()
if hasattr(mm, 'map_convs'):
for params in mm.map_convs.parameters(): params.requires_grad = False
for params in mm.map_bn.parameters(): params.requires_grad = False
mm.map_bn.eval()
epoch_loss = trainer.train(
cur_epoch=cur_epoch,
optim=optimizer,
train_loader=train_loader,
scheduler=scheduler,
logger=logger
)
logger.info(
f"End of Epoch {cur_epoch}/{opts.epochs}, Average Loss={epoch_loss[0]+epoch_loss[1]},"
f" Class Loss={epoch_loss[0]}, Reg Loss={epoch_loss[1]}"
)
# ===== Log metrics on Tensorboard =====
logger.add_scalar("E-Loss", epoch_loss[0] + epoch_loss[1], cur_epoch)
logger.add_scalar("E-Loss-reg", epoch_loss[1], cur_epoch)
logger.add_scalar("E-Loss-cls", epoch_loss[0], cur_epoch)
# ===== Validation =====
if (cur_epoch + 1) % opts.val_interval == 0:
logger.info("validate on val set...")
model.eval()
val_loss, val_score, ret_samples = trainer.validate(
loader=val_loader,
metrics=val_metrics,
ret_samples_ids=sample_ids,
logger=logger
)
logger.print("Done validation")
logger.info(
f"End of Validation {cur_epoch}/{opts.epochs}, Validation Loss={val_loss[0]+val_loss[1]},"
f" Class Loss={val_loss[0]}, Reg Loss={val_loss[1]}"
)
logger.info(val_metrics.to_str(val_score))
# ===== Save Best Model =====
if rank == 0: # save best model at the last iteration
score = val_score['Mean IoU']
# best model to build incremental steps
save_ckpt(
f"{opts.checkpoint}/{task_name}_{opts.name}_{opts.step}.pth", model,
trainer, optimizer, scheduler, cur_epoch, score
)
logger.info("[!] Checkpoint saved.")
# ===== Log metrics on Tensorboard =====
# visualize validation score and samples
logger.add_scalar("V-Loss", val_loss[0] + val_loss[1], cur_epoch)
logger.add_scalar("V-Loss-reg", val_loss[1], cur_epoch)
logger.add_scalar("V-Loss-cls", val_loss[0], cur_epoch)
logger.add_scalar("Val_Overall_Acc", val_score['Overall Acc'], cur_epoch)
logger.add_scalar("Val_MeanIoU", val_score['Mean IoU'], cur_epoch)
logger.add_table("Val_Class_IoU", val_score['Class IoU'], cur_epoch)
logger.add_table("Val_Acc_IoU", val_score['Class Acc'], cur_epoch)
# logger.add_figure("Val_Confusion_Matrix", val_score['Confusion Matrix'], cur_epoch)
# keep the metric to print them at the end of training
results["V-IoU"] = val_score['Class IoU']
results["V-Acc"] = val_score['Class Acc']
for k, (img, target, lbl) in enumerate(ret_samples):
img = (denorm(img) * 255).astype(np.uint8)
target = label2color(target).transpose(2, 0, 1).astype(np.uint8)
lbl = label2color(lbl).transpose(2, 0, 1).astype(np.uint8)
concat_img = np.concatenate((img, target, lbl), axis=2) # concat along width
logger.add_image(f'Sample_{k}', concat_img, cur_epoch)
# ===== Save Best Model at the end of training =====
if rank == 0 and TRAIN: # save best model at the last iteration
# best model to build incremental steps
save_ckpt(
f"{opts.checkpoint}/{task_name}_{opts.name}_{opts.step}.pth", model, trainer, optimizer,
scheduler, cur_epoch, best_score
)
logger.info("[!] Checkpoint saved.")
torch.distributed.barrier()
# xxx From here starts the test code
logger.info("*** Test the model on all seen classes...")
# make data loader
test_loader = data.DataLoader(
test_dst,
batch_size=opts.batch_size if opts.crop_val else 1,
sampler=DistributedSampler(test_dst, num_replicas=world_size, rank=rank),
num_workers=opts.num_workers
)
# load best model
if True: #TRAIN:
# Always reloading model for now
# https://github.com/arthurdouillard/CVPR2021_PLOP/issues/3
model = make_model(
opts, classes=tasks.get_per_task_classes(opts.dataset, opts.task, opts.step)
)
# Put the model on GPU
model = DistributedDataParallel(model.cuda(device))
ckpt = f"{opts.checkpoint}/{task_name}_{opts.name}_{opts.step}.pth"
checkpoint = torch.load(ckpt, map_location="cpu")
### xjw fixed
if opts.step > 0:
for name, mm in model.named_modules():
if hasattr(mm, 'convs'):
mm.convs.conv2.bias = nn.Parameter(torch.zeros(mm.convs.conv2.weight.shape[0]).to(mm.convs.conv2.weight.device))
if hasattr(mm, 'map_convs'):
for kk in range(4):
mm.map_convs[kk].bias = nn.Parameter(torch.zeros(mm.map_convs[kk].weight.shape[0]).to(mm.map_convs[kk].weight.device))
model.load_state_dict(checkpoint["model_state"])
logger.info(f"*** Model restored from {ckpt}")
del checkpoint
trainer = Trainer(model, None, device=device, opts=opts, step=opts.step)
model.eval()
val_loss, val_score, _ = trainer.validate(
loader=test_loader, metrics=val_metrics, logger=logger, end_task=True
)
logger.print("Done test")
logger.info(
f"*** End of Test, Total Loss={val_loss[0]+val_loss[1]},"
f" Class Loss={val_loss[0]}, Reg Loss={val_loss[1]}"
)
logger.info(val_metrics.to_str(val_score))
logger.add_table("Test_Class_IoU", val_score['Class IoU'])
logger.add_table("Test_Class_Acc", val_score['Class Acc'])
logger.add_figure("Test_Confusion_Matrix", val_score['Confusion Matrix'])
results["T-IoU"] = val_score['Class IoU']
results["T-Acc"] = val_score['Class Acc']
logger.add_results(results)
logger.add_scalar("T_Overall_Acc", val_score['Overall Acc'], opts.step)
logger.add_scalar("T_MeanIoU", val_score['Mean IoU'], opts.step)
logger.add_scalar("T_MeanAcc", val_score['Mean Acc'], opts.step)
logger.close()
del model
if model_old is not None:
del model_old
return val_score
if __name__ == '__main__':
parser = argparser.get_argparser()
opts = parser.parse_args()
opts = argparser.modify_command_options(opts)
os.makedirs(f"{opts.checkpoint}", exist_ok=True)
main(opts)