-
Notifications
You must be signed in to change notification settings - Fork 9
/
inverse_query_free_CIFAR.py
408 lines (319 loc) · 15.2 KB
/
inverse_query_free_CIFAR.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
# @Author: Zecheng He
# @Date: 2019-08-31
import time
import math
import os
import numpy as np
import torch
import torchvision
import torchvision.transforms as transforms
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
import torch.backends.cudnn as cudnn
from net import *
from utils import *
#####################
# Training:
# python inverse_access_free_CIFAR.py --layer ReLU22 --iter 50 --training
#
# Testing:
# python inverse_access_free_CIFAR.py --testing --layer ReLU22 --iter 500 --learning_rate 1e-1 --lambda_TV 2e0 --lambda_l2 0.0
#####################
def trainAlternativeDNN(DATASET = 'CIFAR10', network = 'CIFAR10CNNAlternative', NEpochs = 200, imageWidth = 32,
imageHeight = 32, imageSize = 32*32, NChannels = 3, NClasses = 10, layer = 'conv', BatchSize = 32, learningRate = 1e-3,
NDecreaseLR = 5, eps = 1e-3, AMSGrad = True, model_dir = "checkpoints/MNIST/", model_name = "ckpt.pth", save_alternative_model_dir = "checkpoints/MNIST/",
alternative_model_name = "LeNetAccessFree.pth", gpu = True, validation=False):
print "DATASET: ", DATASET
if DATASET == 'CIFAR10':
mu = torch.tensor([0.485, 0.456, 0.406], dtype=torch.float32)
sigma = torch.tensor([0.229, 0.224, 0.225], dtype=torch.float32)
Normalize = transforms.Normalize(mu.tolist(), sigma.tolist())
Unnormalize = transforms.Normalize((-mu / sigma).tolist(), (1.0 / sigma).tolist())
tsf = {
'train': transforms.Compose(
[
transforms.ToTensor(),
Normalize
]),
'test': transforms.Compose(
[
transforms.ToTensor(),
Normalize
])
}
trainset = torchvision.datasets.CIFAR10(root='./data/CIFAR10', train = True,
download=True, transform = tsf['train'])
testset = torchvision.datasets.CIFAR10(root='./data/CIFAR10', train = False,
download=True, transform = tsf['test'])
else:
print "Dataset unsupported"
exit(1)
print "len(trainset) ", len(trainset)
print "len(testset) ", len(testset)
x_train, y_train = trainset.data, trainset.targets,
x_test, y_test = testset.data, testset.targets,
print "x_train.shape ", x_train.shape
print "x_test.shape ", x_test.shape
trainloader = torch.utils.data.DataLoader(trainset, batch_size = BatchSize,
shuffle = False, num_workers = 1)
testloader = torch.utils.data.DataLoader(testset, batch_size = 1000,
shuffle = False, num_workers = 1)
trainIter = iter(trainloader)
testIter = iter(testloader)
# Load the trained model
net = torch.load(model_dir + model_name)
if not gpu:
net = net.cpu()
net.eval()
print "Validate the model accuracy..."
if validation:
accTest = evalTest(testloader, net, gpu = gpu)
altnetDict = {
'CIFAR10CNNAlternative':{
'conv11': CIFAR10CNNAlternativeconv11,
'ReLU22': CIFAR10CNNAlternativeReLU22,
'ReLU32': CIFAR10CNNAlternativeReLU32
}
}
alternativeNetFunc = altnetDict[network][layer]
if gpu:
alternativeNet = alternativeNetFunc(NChannels).cuda()
else:
alternativeNet = alternativeNetFunc(NChannels)
print alternativeNet
# Get dims of input/output, and construct the network
batchX, batchY = trainIter.next()
if gpu:
batchX = batchX.cuda()
edgeOutput = alternativeNet.forward(batchX)
if gpu:
cloudOuput = net.forward_from(edgeOutput, layer).clone()
else:
cloudOuput = net.forward_from(edgeOutput, layer)
print "edgeOutput.size", edgeOutput.size()
print "cloudOuput.size", cloudOuput.size()
NBatch = len(trainset) / BatchSize
if gpu:
CrossEntropyLossLayer = nn.CrossEntropyLoss().cuda()
else:
CrossEntropyLossLayer = nn.CrossEntropyLoss()
# Find the optimal config according to the hardware
cudnn.benchmark = True
optimizer = optim.Adam(params = alternativeNet.parameters(), lr = learningRate, eps = eps, amsgrad = AMSGrad)
# Sanity check
valData, valLabel = iter(testloader).next()
if gpu:
valData = valData.cuda()
valLabel = valLabel.cuda()
edgeOutput = alternativeNet.forward(valData)
cloudOuput = net.forward_from(edgeOutput, layer).clone()
valLoss = CrossEntropyLossLayer(cloudOuput, valLabel)
print "Test Loss without training: ", valLoss.cpu().detach().numpy()
for epoch in range(NEpochs):
lossTrain = 0.0
accTrain = 0.0
for i in range(NBatch):
try:
batchX, batchY = trainIter.next()
except StopIteration:
trainIter = iter(trainloader)
batchX, batchY = trainIter.next()
if gpu:
batchX = batchX.cuda()
batchY = batchY.cuda()
optimizer.zero_grad()
edgeOutput = alternativeNet.forward(batchX).clone()
cloudOuput = net.forward_from(edgeOutput, layer)
featureLoss = CrossEntropyLossLayer(cloudOuput, batchY)
totalLoss = featureLoss
totalLoss.backward()
optimizer.step()
lossTrain += totalLoss.cpu().detach().numpy() / NBatch
valData, valLabel = iter(testloader).next()
if gpu:
valData = valData.cuda()
valLabel = valLabel.cuda()
edgeOutput = alternativeNet.forward(valData)
cloudOuput = net.forward_from(edgeOutput, layer).clone()
valLoss = CrossEntropyLossLayer(cloudOuput, valLabel)
if validation:
accTestSplitModel = evalTestSplitModel(testloader, alternativeNet, net, layer, gpu = gpu)
print "Epoch ", epoch, "Train Loss: ", lossTrain, "Test Loss: ", valLoss.cpu().detach().numpy(), "Test Accuracy", accTestSplitModel
if (epoch + 1) % NDecreaseLR == 0:
learningRate = learningRate / 2.0
setLearningRate(optimizer, learningRate)
if validation:
accTestEnd = evalTest(testloader, net, gpu = gpu)
if accTest != accTestEnd:
print "Something wrong. Original model has been modified!"
exit(1)
if not os.path.exists(save_alternative_model_dir):
os.makedirs(save_alternative_model_dir)
torch.save(alternativeNet, save_alternative_model_dir + alternative_model_name)
print "Model saved"
newNet = torch.load(save_alternative_model_dir + alternative_model_name)
newNet.eval()
print "Model restore done"
def inverse(DATASET = 'CIFAR10', NIters = 500, imageWidth = 32, inverseClass = None,
imageHeight = 32, imageSize = 32*32, NChannels = 3, NClasses = 10, layer = 'ReLU2',
learningRate = 1e-3, NDecreaseLR = 20, eps = 1e-3, lambda_TV = 1e3, lambda_l2 = 1.0,
AMSGrad = True, model_dir = "checkpoints/CIFAR10/", model_name = "ckpt.pth",
alternative_model_name = "CIFAR10CNNAccessFree.pth", save_img_dir = "inverted_access_free/CIFAR10/MSE_TV/",
saveIter = 10, gpu = True, validation=False):
print "DATASET: ", DATASET
print "inverseClass: ", inverseClass
assert inverseClass < NClasses
if DATASET == 'CIFAR10':
mu = torch.tensor([0.485, 0.456, 0.406], dtype=torch.float32)
sigma = torch.tensor([0.229, 0.224, 0.225], dtype=torch.float32)
Normalize = transforms.Normalize(mu.tolist(), sigma.tolist())
Unnormalize = transforms.Normalize((-mu / sigma).tolist(), (1.0 / sigma).tolist())
tsf = {
'train': transforms.Compose(
[
transforms.ToTensor(),
Normalize
]),
'test': transforms.Compose(
[
transforms.ToTensor(),
Normalize
])
}
trainset = torchvision.datasets.CIFAR10(root='./data/CIFAR10', train = True,
download=True, transform = tsf['train'])
testset = torchvision.datasets.CIFAR10(root='./data/CIFAR10', train = False,
download=True, transform = tsf['test'])
else:
print "Dataset unsupported"
exit(1)
print "len(trainset) ", len(trainset)
print "len(testset) ", len(testset)
x_train, y_train = trainset.train_data, trainset.train_labels,
x_test, y_test = testset.test_data, testset.test_labels,
print "x_train.shape ", x_train.shape
print "x_test.shape ", x_test.shape
trainloader = torch.utils.data.DataLoader(trainset, batch_size = 1,
shuffle = False, num_workers = 1)
testloader = torch.utils.data.DataLoader(testset, batch_size = 1000,
shuffle = False, num_workers = 1)
inverseloader = torch.utils.data.DataLoader(testset, batch_size = 1,
shuffle = False, num_workers = 1)
trainIter = iter(trainloader)
testIter = iter(testloader)
inverseIter = iter(inverseloader)
# Load the trained model
net = torch.load(model_dir + model_name)
if not gpu:
net = net.cpu()
net.eval()
print "Validate the model accuracy..."
if validation:
accTest = evalTest(testloader, net, gpu = gpu)
alternativeNet = torch.load(model_dir + alternative_model_name)
if not gpu:
alternativeNet = alternativeNet.cpu()
alternativeNet.eval()
print alternativeNet
#print "Validate the alternative model..."
batchX, batchY = iter(testloader).next()
if gpu:
batchX = batchX.cuda()
batchY = batchY.cuda()
if gpu:
MSELossLayer = torch.nn.MSELoss().cuda()
else:
MSELossLayer = torch.nn.MSELoss()
originalModelOutput = net.getLayerOutput(batchX, net.layerDict[layer]).clone()
alternativeModelOutput = alternativeNet.forward(batchX)
print "originalModelOutput.shape: ", originalModelOutput.shape, "alternativeModelOutput.shape: ", alternativeModelOutput.shape
print "MSE difference on layer " + layer, MSELossLayer(originalModelOutput, alternativeModelOutput)
targetImg, _ = getImgByClass(inverseIter, C = inverseClass)
print "targetImg.size()", targetImg.size()
deprocessImg = deprocess(targetImg.clone())
if not os.path.exists(save_img_dir):
os.makedirs(save_img_dir)
torchvision.utils.save_image(deprocessImg, save_img_dir + str(inverseClass) + '-ref.png')
if gpu:
targetImg = targetImg.cuda()
targetLayer = net.layerDict[layer]
refFeature = net.getLayerOutput(targetImg, targetLayer)
print "refFeature.size()", refFeature.size()
if gpu:
xGen = torch.zeros(targetImg.size(), requires_grad = True, device="cuda")
else:
xGen = torch.zeros(targetImg.size(), requires_grad = True)
optimizer = optim.Adam(params = [xGen], lr = learningRate, eps = eps, amsgrad = AMSGrad)
for i in range(NIters):
optimizer.zero_grad()
xFeature = alternativeNet.forward(xGen)
featureLoss = ((xFeature - refFeature)**2).mean()
TVLoss = TV(xGen)
normLoss = l2loss(xGen)
totalLoss = featureLoss + lambda_TV * TVLoss + lambda_l2 * normLoss
totalLoss.backward(retain_graph=True)
optimizer.step()
print "Iter ", i, "Feature loss: ", featureLoss.cpu().detach().numpy(), "TVLoss: ", TVLoss.cpu().detach().numpy(), "l2Loss: ", normLoss.cpu().detach().numpy()
# save the final result
imgGen = xGen.clone()
imgGen = deprocess(imgGen)
torchvision.utils.save_image(imgGen, save_img_dir + str(inverseClass) + '-inv.png')
print "Done"
if __name__ == '__main__':
import argparse
import sys
import traceback
try:
parser = argparse.ArgumentParser()
parser.add_argument('--dataset', type = str, default = 'CIFAR10')
parser.add_argument('--network', type = str, default = 'CIFAR10CNNAlternative')
parser.add_argument('--training', dest='training', action='store_true')
parser.add_argument('--testing', dest='training', action='store_false')
parser.set_defaults(training=False)
parser.add_argument('--iters', type = int, default = 50)
parser.add_argument('--eps', type = float, default = 1e-3)
parser.add_argument('--lambda_TV', type = float, default = 1.0)
parser.add_argument('--lambda_l2', type = float, default = 1.0)
parser.add_argument('--AMSGrad', type = bool, default = True)
parser.add_argument('--batch_size', type = int, default = 32)
parser.add_argument('--learning_rate', type = float, default = 1e-3)
parser.add_argument('--decrease_LR', type = int, default = 10)
parser.add_argument('--layer', type = str, default = 'conv11')
parser.add_argument('--method', type = str, default = "MSE_TV")
parser.add_argument('--save_iter', type = int, default = 10)
parser.add_argument('--inverseClass', type = int, default = 0)
parser.add_argument('--altmodelname', type = str, default = "CIFAR10CNNAccessFree")
parser.add_argument('--nogpu', dest='gpu', action='store_false')
parser.set_defaults(gpu=True)
parser.add_argument('--novalidation', dest='validation', action='store_false')
parser.set_defaults(validation=True)
args = parser.parse_args()
model_dir = "checkpoints/" + args.dataset + '/'
model_name = "ckpt.pth"
alternative_model_name = args.altmodelname + args.layer + '.pth'
save_img_dir = "inverted_access_free/" + args.dataset + '/' + args.layer + '/'
if args.dataset == 'CIFAR10':
imageWidth = 32
imageHeight = 32
imageSize = imageWidth * imageHeight
NChannels = 3
NClasses = 10
else:
print "No Dataset Found"
exit()
if args.training:
trainAlternativeDNN(DATASET = args.dataset, network = 'CIFAR10CNNAlternative', NEpochs = args.iters, imageWidth = imageWidth,
imageHeight = imageHeight, imageSize = imageSize, NChannels = NChannels, NClasses = NClasses, layer = args.layer, BatchSize = args.batch_size, learningRate = args.learning_rate,
NDecreaseLR = args.decrease_LR, eps = args.eps, AMSGrad = True, model_dir = "checkpoints/CIFAR10/", model_name = "ckpt.pth", save_alternative_model_dir = "checkpoints/CIFAR10/",
alternative_model_name = alternative_model_name, gpu = args.gpu, validation=args.validation)
else:
for c in range(NClasses):
inverse(DATASET = args.dataset, NIters = args.iters, imageWidth = imageWidth, inverseClass = c,
imageHeight = imageHeight, imageSize = imageSize, NChannels = NChannels, NClasses = NClasses, layer = args.layer,
learningRate = args.learning_rate, NDecreaseLR = args.decrease_LR, eps = args.eps, lambda_TV = args.lambda_TV, lambda_l2 = args.lambda_l2,
AMSGrad = args.AMSGrad, model_dir = model_dir, model_name = model_name, alternative_model_name = alternative_model_name,
save_img_dir = save_img_dir, saveIter = args.save_iter, gpu = args.gpu, validation=args.validation)
except:
traceback.print_exc(file=sys.stdout)
sys.exit(1)