-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtest_fssp.py
292 lines (250 loc) · 13.2 KB
/
test_fssp.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
import numpy as np
import torch
import time
import random
from env.environment import Env
from model.actor import Actor
from ortools_solver import MinimalJobshopSat
from parameters import args
import pandas as pd
def main():
seed = args.t_seed
random.seed(seed)
np.random.seed(seed)
np.seterr(divide='ignore') # rm RuntimeWarning: divide by zero encountered in true_divide priority = fdd/wkr of Orb
dev = 'cuda' if torch.cuda.is_available() else 'cpu'
print('using {} to test...'.format(dev))
# MDP config
performance_milestones = [500, 1000, 2000, 5000] # [500, 1000, 2000, 5000]
result_type = 'incumbent' # 'last_step', 'incumbent'
init = 'fdd-divide-wkr' # 'fdd-divide-wkr', 'spt'
# testing specific size
if args.test_specific_size == 'True':
# which model to load
algo_config = '{}-{}_{}-{}-{}-{}-{}_FSSP-{}x{}-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}'.format(
# env parameters
args.tabu_size,
args.init_type,
# model parameters
args.hidden_channels, args.out_channels, args.heads, args.dropout_for_gat, args.embed_net,
# training parameters
args.j, args.m, args.lr, args.steps_learn, args.transit, args.batch_size, args.total_instances,
args.step_validation, args.ent_coeff, args.training_seed, args.embed_tabu_label, args.action_selection_type
)
test_instance_size = [p_j, p_m] = [args.t_j, args.t_m]
print('Testing all open benchmark of size {}.'.format(test_instance_size))
if test_instance_size == [20, 5]:
testing_type = ['tai']
elif test_instance_size == [20, 10]:
testing_type = ['tai']
elif test_instance_size == [20, 20]:
testing_type = ['tai']
else:
raise RuntimeError('Open benchmark has no instances of size: {}.'.format(test_instance_size))
for test_t in testing_type: # select benchmark
inst = np.load('./test_data_fssp/{}{}x{}.npy'.format(test_t, p_j, p_m)) # [[0], :, :, :]
print('\nStart testing FSSP-{}{}x{}...'.format(test_t, p_j, p_m))
# read saved gap_against or use ortools to solve it.
gap_against = np.load('./test_data_fssp/{}{}x{}_result.npy'.format(test_t, p_j, p_m))
env = Env()
policy = Actor(
in_channels_fwd=args.in_channels_fwd,
in_channels_bwd=args.in_channels_bwd,
hidden_channels=args.hidden_channels,
out_channels=args.out_channels,
heads=args.heads,
dropout_for_gat=args.dropout_for_gat
).to(dev).eval()
saved_model_path = './saved_model/incumbent_model_' + algo_config + '.pth'
print('loading model from:', saved_model_path)
policy.load_state_dict(torch.load(saved_model_path, map_location=torch.device(dev)))
pytorch_total_params = sum(p.numel() for p in policy.parameters() if p.requires_grad)
print('Total number of parameters of model: \n{}\n is:'.format(saved_model_path), pytorch_total_params)
torch.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
print('Starting rollout DRL policy...')
# t3 = time.time()
result, computation_time = [], []
G, (action_set, optimal_mark, paths) = env.reset(
instances=inst,
init_sol_type=init,
tabu_size=args.tabu_size,
device=dev,
mask_previous_action=args.mask_previous_action == 'True',
longest_path_finder=args.path_finder)
# t4 = time.time()
drl_start = time.time()
while env.itr < max(performance_milestones):
# t1 = time.time()
sampled_a, log_p, ent = policy(
pyg_sol=G,
feasible_action=action_set,
optimal_mark=optimal_mark
)
G, reward, (action_set, optimal_mark, paths) = env.step(
action=sampled_a,
prt=False,
show_action_space_compute_time=False
)
# t2 = time.time()
for log_horizon in performance_milestones:
if env.itr == log_horizon:
if result_type == 'incumbent':
DRL_result = env.incumbent_objs.cpu().squeeze().numpy()
else:
DRL_result = env.current_objs.cpu().squeeze().numpy()
result.append(DRL_result)
computation_time.append(time.time() - drl_start)
print(
'For testing steps: {} '.format(
env.itr if env.itr > min(performance_milestones) else ' ' + str(env.itr)),
'Optimal Gap: {:.6f} '.format(((DRL_result - gap_against) / gap_against).mean()),
'Average Time: {:.4f} '.format(computation_time[-1] / inst.shape[0]),
"Cmax is: {}".format(env.incumbent_objs.cpu().numpy() # show makespan explicitly
)
)
# testing all benchmark
else:
print('Testing all instances of all sizes using all models.')
# should be manually set to the size of model you have trained, see 'saved_model' folder.
model_size = [
[10, 10],
[20, 5],
[20, 10],
[20, 20]
]
# model_size = [
# [6, 6],
# ]
mean_gap_all_model_all_benchmark = []
mean_time_all_model_all_benchmark = []
csv_index = []
env_model_config = '{}-{}_{}-{}-{}-{}-{}'.format(
# env parameters
args.tabu_size,
args.init_type,
# model parameters
args.hidden_channels, args.out_channels, args.heads, args.dropout_for_gat, args.embed_net
)
training_config = '{}-{}-{}-{}-{}-{}-{}-{}-{}-{}'.format(
# training parameters
args.lr, args.steps_learn, args.transit, args.batch_size,
args.total_instances, args.step_validation, args.ent_coeff, args.training_seed, args.embed_tabu_label,
args.action_selection_type
)
for [model_j, model_m] in model_size:
testing_type = ['tai'] # ['tai']
tai_problem_j = [20, 20, 20] # [20, 20, 20]
tai_problem_m = [5, 10, 20] # [5, 15, 20]
mean_gap_all_benchmark = []
mean_time_all_benchmark = []
for test_t in testing_type: # select benchmark
if test_t == 'tai':
problem_j, problem_m = tai_problem_j, tai_problem_m
else:
raise Exception(
'Problem type must be in testing_type = ["tai"].')
mean_gap_each_bench = []
mean_time_each_bench = []
for p_j, p_m in zip(problem_j, problem_m): # select problem size
inst = np.load('./test_data_fssp/{}{}x{}.npy'.format(test_t, p_j, p_m))
print('\nStart testing FSSP-{}{}x{}...'.format(test_t, p_j, p_m))
# read saved gap_against or use ortools to solve it.
gap_against = np.load('./test_data_fssp/{}{}x{}_result.npy'.format(test_t, p_j, p_m))
env = Env()
policy = Actor(
in_channels_fwd=args.in_channels_fwd,
in_channels_bwd=args.in_channels_bwd,
hidden_channels=args.hidden_channels,
out_channels=args.out_channels,
heads=args.heads,
dropout_for_gat=args.dropout_for_gat
).to(dev).eval()
model_size_config = 'FSSP-{}x{}'.format(model_j, model_m)
algo_config = env_model_config + '_' + model_size_config + '-' + training_config
saved_model_path = './saved_model/incumbent_model_' + algo_config + '.pth'
print('loading model from:', saved_model_path)
policy.load_state_dict(torch.load(saved_model_path, map_location=torch.device(dev)))
torch.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
print('Starting rollout DRL policy...')
# t3 = time.time()
G, (action_set, optimal_mark, paths) = env.reset(
instances=inst,
init_sol_type=init,
tabu_size=args.tabu_size,
device=dev,
mask_previous_action=args.mask_previous_action == 'True',
longest_path_finder=args.path_finder)
# t4 = time.time()
mean_gap_each_size = []
mean_time_each_size = []
drl_start = time.time()
while env.itr < max(performance_milestones):
# t1 = time.time()
sampled_a, log_p, ent = policy(
pyg_sol=G,
feasible_action=action_set,
optimal_mark=optimal_mark
)
G, reward, (action_set, optimal_mark, paths) = env.step(
action=sampled_a,
prt=False,
show_action_space_compute_time=False
)
# t2 = time.time()
for log_horizon in performance_milestones:
if env.itr == log_horizon:
time_milestone = time.time() - drl_start
csv_index.append('{} {}x{} {}'.format(test_t, p_j, p_m, log_horizon))
if result_type == 'incumbent':
DRL_result = env.incumbent_objs.cpu().squeeze().numpy()
else:
DRL_result = env.current_objs.cpu().squeeze().numpy()
print('For testing steps: {} '.format(
env.itr if env.itr > 500 else ' ' + str(env.itr)),
'Optimal Gap: {:.6f} '.format(
((DRL_result - gap_against) / gap_against).mean()),
'Average Time: {:.4f} '.format(time_milestone / inst.shape[0]),
"Cmax is: {}".format(env.incumbent_objs.cpu().numpy() # show makespan explicitly
)
)
# show makespan explicitly
# print()
mean_gap_each_size.append(((DRL_result - gap_against) / gap_against).mean())
mean_time_each_size.append(time_milestone / inst.shape[0])
mean_time_each_bench.append(np.array(mean_time_each_size).reshape(-1, 1))
mean_gap_each_bench.append(np.array(mean_gap_each_size).reshape(-1, 1))
mean_gap_all_benchmark.append(np.concatenate(mean_gap_each_bench, axis=0))
mean_time_all_benchmark.append(np.concatenate(mean_time_each_bench, axis=0))
mean_gap_all_benchmark.append(np.array([[-1]], dtype=float))
mean_time_all_benchmark.append(np.array([[-1]], dtype=float))
csv_index.append('dummy')
mean_gap_all_benchmark = np.concatenate(mean_gap_all_benchmark, axis=0)
mean_time_all_benchmark = np.concatenate(mean_time_all_benchmark, axis=0)
mean_gap_all_model_all_benchmark.append(mean_gap_all_benchmark)
mean_time_all_model_all_benchmark.append(mean_time_all_benchmark)
mean_gap_all_model_all_benchmark = np.concatenate(mean_gap_all_model_all_benchmark, axis=1)
mean_time_all_model_all_benchmark = np.concatenate(mean_time_all_model_all_benchmark, axis=1)
dataFrame_gap = pd.DataFrame(
mean_gap_all_model_all_benchmark,
index=csv_index[:mean_gap_all_model_all_benchmark.shape[0]],
columns=['{}x{}'.format(model_j, model_m) for [model_j, model_m] in model_size])
dataFrame_time = pd.DataFrame(
mean_time_all_model_all_benchmark,
index=csv_index[:mean_time_all_model_all_benchmark.shape[0]],
columns=['{}x{}'.format(model_j, model_m) for [model_j, model_m] in model_size])
# writing to excel
with pd.ExcelWriter('excel/FSSP-{}.xlsx'.format(env_model_config + '_' + training_config)) as writer:
dataFrame_gap.to_excel(
writer,
sheet_name='mean gap', # sheet name
float_format='%.8f'
)
dataFrame_time.to_excel(
writer,
sheet_name='mean time', # sheet name
float_format='%.8f'
)
if __name__ == '__main__':
main()