LLM is the key component to ensure the functionality of chatbot. Besides providing AI response for users, it can also help to analyze the underlying user needs based on context or assume potential user questions given document.
The chatbot uses ChatLLM
module to generate responses as the final answer, which will be returned to the user end. In order to adapt the LangChain agent, this must be a LangChain BaseChatModel
.
By default, it uses ChatOpenAI
from LangChain, which calls the chat service of OpenAI.
Refer to LangChain Models for more LLM options.
You can modify config.py to configure the ChatAI used to build the chat agent. By default, it calls OpenAI Chat service using GPT-3.5 model and sets temperature to 0. You can find more parameters at OpenAI API Reference.
chat_configs = {
'openai': {
'openai_model': 'gpt-3.5-turbo',
'openai_api_key': None, # will use environment value 'OPENAI_API_KEY' if None
'llm_kwargs': {
'temperature': 0.8,
# 'max_tokens': 200,
}
},
}
from langchain.schema import HumanMessage
from llm import ChatLLM
llm = ChatLLM(temperature=0.0)
messages = [HumanMessage(content='This is a test user message.')]
resp = llm(messages)
A ChatLLM should inherit LangChain BaseChatModel.
To customize the module, you can define your own _generate
and _agenerate
methods.
from typing import List, Optional
from langchain.callbacks.manager import AsyncCallbackManagerForLLMRun, CallbackManagerForLLMRun
from langchain.schema import BaseMessage, ChatResult
class ChatLLM(BaseChatModel):
def _generate(self,
messages: List[BaseMessage],
stop: Optional[List[str]] = None,
run_manager: Optional[CallbackManagerForLLMRun] = None
) -> ChatResult:
# Your method here
pass
async def _agenerate(self,
messages: List[BaseMessage],
stop: Optional[List[str]] = None,
run_manager: Optional[AsyncCallbackManagerForLLMRun] = None,
) -> ChatResult:
# Your method here
pass