-
Notifications
You must be signed in to change notification settings - Fork 11
/
train_from_cls_weight(ori).py
executable file
·373 lines (290 loc) · 14.2 KB
/
train_from_cls_weight(ori).py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
import os
import numpy as np
import torch
from torch.backends import cudnn
cudnn.enabled = True
from tool import pyutils, imutils, torchutils
import argparse
import importlib
import torch.nn.functional as F
from DenseEnergyLoss import DenseEnergyLoss
import random
import cv2
def compute_joint_loss(ori_img, seg, seg_label, croppings):
seg_label = np.expand_dims(seg_label,axis=1)
seg_label = torch.from_numpy(seg_label)
w = seg_label.shape[2]
h = seg_label.shape[3]
pred = F.upsample(seg,(w,h),mode="bilinear",align_corners=False)
pred_softmax = torch.nn.Softmax(dim=1)
pred_probs = pred_softmax(pred)
ori_img = torch.from_numpy(ori_img.astype(np.float32))
croppings = torch.from_numpy(croppings.astype(np.float32).transpose(2,0,1))
dloss = DenseEnergyLosslayer(ori_img,pred_probs,croppings, seg_label)
dloss = dloss.cuda()
seg_label_tensor = seg_label.long().cuda()
seg_label_copy = torch.squeeze(seg_label_tensor.clone())
bg_label = seg_label_copy.clone()
fg_label = seg_label_copy.clone()
bg_label[seg_label_copy != 0] = 255
fg_label[seg_label_copy == 0] = 255
bg_celoss = critersion(pred, bg_label.long().cuda())
fg_celoss = critersion(pred, fg_label.long().cuda())
celoss = bg_celoss + fg_celoss
return celoss, dloss
def read_file(path_to_file):
with open(path_to_file) as f:
img_list = []
for line in f:
img_list.append(line[:-1])
return img_list
def chunker(seq, size):
return (seq[pos:pos + size] for pos in range(0, len(seq), size))
def resize_label_batch(label, size):
label_resized = np.zeros((size, size, 1, label.shape[3]))
interp = torch.nn.UpsamplingBilinear2d(size=(size, size))
labelVar = torch.autograd.Variable(torch.from_numpy(label.transpose(3, 2, 0, 1)))
label_resized[:, :, :, :] = interp(labelVar).data.numpy().transpose(2, 3, 1, 0)
label_resized[label_resized>21] = 255
return label_resized
def flip(I, flip_p):
if flip_p > 0.5:
return np.fliplr(I)
else:
return I
def scale_im(img_temp, scale):
new_dims = (int(img_temp.shape[1] * scale), int(img_temp.shape[0] * scale))
return cv2.resize(img_temp, new_dims).astype(float)
def scale_gt(img_temp, scale):
new_dims = (int(img_temp.shape[1] * scale), int(img_temp.shape[0] * scale))
return cv2.resize(img_temp, new_dims, interpolation=cv2.INTER_NEAREST).astype(float)
def load_image_label_list_from_npy(img_name_list):
cls_labels_dict = np.load('voc12/cls_labels.npy').item()
return [cls_labels_dict[img_name] for img_name in img_name_list]
def RandomCrop(imgarr, cropsize):
h, w, c = imgarr.shape
ch = min(cropsize, h)
cw = min(cropsize, w)
w_space = w - cropsize
h_space = h - cropsize
if w_space > 0:
cont_left = 0
img_left = random.randrange(w_space+1)
else:
cont_left = random.randrange(-w_space+1)
img_left = 0
if h_space > 0:
cont_top = 0
img_top = random.randrange(h_space+1)
else:
cont_top = random.randrange(-h_space+1)
img_top = 0
img_container = np.zeros((cropsize, cropsize, imgarr.shape[-1]), np.float32)
cropping = np.zeros((cropsize, cropsize), np.bool)
img_container[cont_top:cont_top+ch, cont_left:cont_left+cw] = \
imgarr[img_top:img_top+ch, img_left:img_left+cw]
cropping[cont_top:cont_top + ch, cont_left:cont_left + cw] = 1
return img_container, cropping
def compute_cam_up(cam, label, w, h):
cam_up = F.upsample(cam, (w, h), mode='bilinear', align_corners=False)
cam_up = cam_up * label.clone().view(b, 20, 1, 1)
cam_up = cam_up.cpu().data.numpy()
return cam_up
def _crf_with_alpha(ori_img,cam_dict, alpha):
v = np.array(list(cam_dict.values()))
bg_score = np.power(1 - np.max(v, axis=0, keepdims=True), alpha)
bgcam_score = np.concatenate((bg_score, v), axis=0)
crf_score = imutils.crf_inference(ori_img, bgcam_score, labels=bgcam_score.shape[0])
# n_crf_al = dict()
n_crf_al = np.zeros([21, bg_score.shape[1], bg_score.shape[2]])
n_crf_al[0, :, :] = crf_score[0, :, :]
for i, key in enumerate(cam_dict.keys()):
n_crf_al[key + 1] = crf_score[i + 1]
return n_crf_al
def compute_seg_label(ori_img, cam_label, norm_cam):
cam_label = cam_label.astype(np.uint8)
cam_dict = {}
cam_np = np.zeros_like(norm_cam)
for i in range(20):
if cam_label[i] > 1e-5:
cam_dict[i] = norm_cam[i]
cam_np[i] = norm_cam[i]
bg_score = np.power(1 - np.max(cam_np, 0), 32)
bg_score = np.expand_dims(bg_score, axis=0)
cam_all = np.concatenate((bg_score, cam_np))
_, bg_w, bg_h = bg_score.shape
cam_img = np.argmax(cam_all, 0)
crf_la = _crf_with_alpha(ori_img, cam_dict, 4)
crf_ha = _crf_with_alpha(ori_img, cam_dict, 32)
crf_la_label = np.argmax(crf_la, 0)
crf_ha_label = np.argmax(crf_ha, 0)
crf_label = crf_la_label.copy()
crf_label[crf_la_label == 0] = 255
single_img_classes = np.unique(crf_la_label)
cam_sure_region = np.zeros([bg_w, bg_h], dtype=bool)
for class_i in single_img_classes:
if class_i != 0:
class_not_region = (cam_img != class_i)
cam_class = cam_all[class_i, :, :]
cam_class[class_not_region] = 0
cam_class_order = cam_class[cam_class > 0.1]
cam_class_order = np.sort(cam_class_order)
confidence_pos = int(cam_class_order.shape[0] * 0.6)
confidence_value = cam_class_order[confidence_pos]
class_sure_region = (cam_class > confidence_value)
cam_sure_region = np.logical_or(cam_sure_region, class_sure_region)
else:
class_not_region = (cam_img != class_i)
cam_class = cam_all[class_i, :, :]
cam_class[class_not_region] = 0
class_sure_region = (cam_class > 0.8)
cam_sure_region = np.logical_or(cam_sure_region, class_sure_region)
cam_not_sure_region = ~cam_sure_region
crf_label[crf_ha_label == 0] = 0
crf_label_np = np.concatenate([np.expand_dims(crf_ha[0, :, :], axis=0), crf_la[1:, :, :]])
crf_not_sure_region = np.max(crf_label_np, 0) < 0.8
not_sure_region = np.logical_or(crf_not_sure_region, cam_not_sure_region)
crf_label[not_sure_region] = 255
return crf_label
def get_data_from_chunk_v2(chunk):
img_path = args.IMpath
scale = np.random.uniform(0.7, 1.3)
dim = args.crop_size
images = np.zeros((dim, dim, 3, len(chunk)))
ori_images = np.zeros((dim, dim, 3, len(chunk)),dtype=np.uint8)
croppings = np.zeros((dim, dim, len(chunk)))
labels = load_image_label_list_from_npy(chunk)
labels = torch.from_numpy(np.array(labels))
for i, piece in enumerate(chunk):
flip_p = np.random.uniform(0, 1)
img_temp = cv2.imread(os.path.join(img_path, piece + '.jpg'))
img_temp = cv2.cvtColor(img_temp,cv2.COLOR_BGR2RGB).astype(np.float)
img_temp = scale_im(img_temp, scale)
img_temp = flip(img_temp, flip_p)
img_temp[:, :, 0] = (img_temp[:, :, 0] / 255. - 0.485) / 0.229
img_temp[:, :, 1] = (img_temp[:, :, 1] / 255. - 0.456) / 0.224
img_temp[:, :, 2] = (img_temp[:, :, 2] / 255. - 0.406) / 0.225
img_temp, cropping = RandomCrop(img_temp, dim)
ori_temp = np.zeros_like(img_temp)
ori_temp[:, :, 0] = (img_temp[:, :, 0] * 0.229 + 0.485) * 255.
ori_temp[:, :, 1] = (img_temp[:, :, 1] * 0.224 + 0.456) * 255.
ori_temp[:, :, 2] = (img_temp[:, :, 2] * 0.225 + 0.406) * 255.
ori_images[:, :, :, i] = ori_temp.astype(np.uint8)
croppings[:,:,i] = cropping.astype(np.float32)
images[:, :, :, i] = img_temp
images = images.transpose((3, 2, 0, 1))
ori_images = ori_images.transpose((3, 2, 0, 1))
images = torch.from_numpy(images).float()
return images, ori_images, labels, croppings
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument("--batch_size", default=4, type=int)
parser.add_argument("--max_epoches", default=10, type=int)
parser.add_argument("--network", default="network.resnet38_cls_dataset_mGPU_cuda2", type=str)
parser.add_argument("--lr", default=0.0007, type=float)
parser.add_argument("--num_workers", default=16, type=int)
parser.add_argument("--wt_dec", default=1e-5, type=float)
parser.add_argument("--weights",
default='/data1/zbf_data/psa_zbf/outweights/train_aug/res38_cls.pth',
type=str)
parser.add_argument("--train_list", default="voc12/train_aug.txt", type=str)
parser.add_argument("--val_list", default="voc12/val.txt", type=str)
parser.add_argument("--session_name", default="dataset_dloss_cuda22(true)_", type=str)
parser.add_argument("--crop_size", default=321, type=int)
parser.add_argument("--class_numbers", default=20, type=int)
parser.add_argument("--voc12_root", default='/home/zbf/dataset/VOCdevkit/VOC2012', type=str)
parser.add_argument('--densecrfloss', type=float, default=1e-7,
metavar='M', help='densecrf loss (default: 0)')
parser.add_argument('--crf_la_value', type=int, default=4)
parser.add_argument('--crf_ha_value', type=int, default=32)
parser.add_argument('--rloss-scale', type=float, default=0.5,
help='scale factor for rloss input, choose small number for efficiency, domain: (0,1]')
parser.add_argument('--sigma-rgb', type=float, default=15.0,
help='DenseCRF sigma_rgb')
parser.add_argument('--sigma-xy', type=float, default=100,
help='DenseCRF sigma_xy')
parser.add_argument('--gpu_id', type=str, default='3',
help='DenseCRF sigma_xy')
parser.add_argument('--crf_value', type=float, default=0.99,
help='DenseCRF sigma_xy')
parser.add_argument("--LISTpath", default="/data1/zbf_data/deeplabv2/pytorch-deeplab-resnet/data/list/"
"train_aug.txt", type=str)
parser.add_argument("--GTpath", default="/data1/zbf_data/psa_zbf/outweights/train_aug/training_label", type=str)
parser.add_argument("--IMpath", default="/home/zbf/dataset/VOCdevkit/VOC2012/JPEGImages", type=str)
args = parser.parse_args()
gpu_id = args.gpu_id
os.environ["CUDA_VISIBLE_DEVICES"] = gpu_id
save_path = os.path.join("/data1/zbf_data/psa_zbf/outweights/train_aug",
args.session_name)
print("dloss weight", args.densecrfloss)
critersion = torch.nn.CrossEntropyLoss(weight=None, ignore_index=255, reduction='elementwise_mean').cuda()
DenseEnergyLosslayer = DenseEnergyLoss(weight=args.densecrfloss, sigma_rgb=args.sigma_rgb,
sigma_xy=args.sigma_xy, scale_factor=args.rloss_scale)
model = getattr(importlib.import_module(args.network), 'SegNet')()
pyutils.Logger(args.session_name + '.log')
print(vars(args))
max_step = 20000
batch_size = args.batch_size
img_list = read_file(args.LISTpath)
data_list = []
for i in range(20*args.max_epoches):
np.random.shuffle(img_list)
data_list.extend(img_list)
param_groups = model.get_parameter_groups()
optimizer = torchutils.PolyOptimizer([
{'params': param_groups[0], 'lr': args.lr, 'weight_decay': args.wt_dec},
{'params': param_groups[1], 'lr': 2*args.lr, 'weight_decay': 0},
{'params': param_groups[2], 'lr': 10*args.lr, 'weight_decay': args.wt_dec},
{'params': param_groups[3], 'lr': 20*args.lr, 'weight_decay': 0}
], lr=args.lr, weight_decay=args.wt_dec, max_step=max_step)
# optimizer = torch.nn.DataParallel(optimizer,device_ids=device_ids)
if args.weights[-7:] == '.params':
assert args.network == "network.resnet38_cls_dataset_mGPU_cuda2"
import network.resnet38d
weights_dict = network.resnet38d.convert_mxnet_to_torch(args.weights)
elif args.weights[-11:] == '.caffemodel':
assert args.network == "network.vgg16_cls"
import network.vgg16d
weights_dict = network.vgg16d.convert_caffe_to_torch(args.weights)
else:
weights_dict = torch.load(args.weights)
model.load_state_dict(weights_dict, strict=False)
model = torch.nn.DataParallel(model).cuda()
model.train()
avg_meter = pyutils.AverageMeter('loss')
timer = pyutils.Timer("Session started: ")
data_gen = chunker(data_list, batch_size)
for iter in range(max_step + 1):
chunk = data_gen.__next__()
img_list = chunk
images, ori_images, label, croppings = get_data_from_chunk_v2(chunk)
b, _, w, h = ori_images.shape
c = args.class_numbers
label = label.cuda(non_blocking=True)
x_f, cam, seg = model(images, require_seg = True, require_mcam = True)
cam_up = compute_cam_up(cam, label, w, h)
seg_label = np.zeros((b,w,h))
for i in range(b):
cam_up_single = cam_up[i]
cam_label = label[i].cpu().numpy()
ori_img = ori_images[i].transpose(1,2,0).astype(np.uint8)
norm_cam = cam_up_single/(np.max(cam_up_single, (1, 2), keepdims=True) + 1e-5)
seg_label[i] = compute_seg_label(ori_img, cam_label, norm_cam)
closs = F.multilabel_soft_margin_loss(x_f, label)
celoss, dloss = compute_joint_loss(ori_images, seg[0], seg_label, croppings)
loss = closs + celoss + dloss
print('closs:',closs.data,'celoss',celoss.data, 'dloss',dloss.data)
avg_meter.add({'loss': loss.item()})
optimizer.zero_grad()
loss.backward()
optimizer.step()
if (optimizer.global_step - 1) % 50 == 0:
timer.update_progress(optimizer.global_step / max_step)
print('Iter:%5d/%5d' % (optimizer.global_step - 1, max_step),
'Loss:%.4f' % (avg_meter.pop('loss')),
'imps:%.1f' % ((iter + 1) * args.batch_size / timer.get_stage_elapsed()),
'Fin:%s' % (timer.str_est_finish()),
'lr: %.4f' % (optimizer.param_groups[0]['lr']), flush=True)
if (optimizer.global_step - 1) % 2000 == 0 and optimizer.global_step > 10000:
torch.save(model.module.state_dict(), save_path + '%d.pth' % (optimizer.global_step - 1))
torch.save(model.module.state_dict(), args.session_name + '.pth')