-
Notifications
You must be signed in to change notification settings - Fork 11
/
train_from_cls_weight(attention).py
executable file
·141 lines (106 loc) · 5.77 KB
/
train_from_cls_weight(attention).py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
import os
import numpy as np
import torch
from torch.backends import cudnn
cudnn.enabled = True
from tool import pyutils, torchutils
import argparse
import importlib
import torch.nn.functional as F
from DenseEnergyLoss import DenseEnergyLoss
import tool.myTool as mytool
from tool.myTool import compute_joint_loss, compute_seg_label, compute_cam_up
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--gpu_id', type=str, default='0,1', help='GPU_id')
parser.add_argument("--LISTpath", default="voc12/train_aug(id).txt", type=str)
parser.add_argument("--IMpath", default="/home/zbf/dataset/VOCdevkit/VOC2012/JPEGImages", type=str)
parser.add_argument("--SAVEpath", default="./output/model_weights", type=str)
parser.add_argument("--batch_size", default=8, type=int)
parser.add_argument("--max_step", default=40000, type=int)
parser.add_argument("--network", default="network.RRM(attention)", type=str)
parser.add_argument("--lr", default=0.001, type=float)
parser.add_argument("--num_workers", default=16, type=int)
parser.add_argument("--wt_dec", default=1e-5, type=float)
parser.add_argument("--weights",default='./netWeights/res38_cls.pth', type=str)
parser.add_argument("--session_name", default="RRM(attention)_", type=str)
parser.add_argument("--crop_size", default=321, type=int)
parser.add_argument("--class_numbers", default=20, type=int)
parser.add_argument('--crf_la_value', type=int, default=4)
parser.add_argument('--crf_ha_value', type=int, default=32)
parser.add_argument('--densecrfloss', type=float, default=1e-7,
metavar='M', help='densecrf loss (default: 0)')
parser.add_argument('--rloss-scale', type=float, default=0.5,
help='scale factor for rloss input, choose small number for efficiency, domain: (0,1]')
parser.add_argument('--sigma-rgb', type=float, default=15.0,
help='DenseCRF sigma_rgb')
parser.add_argument('--sigma-xy', type=float, default=100,
help='DenseCRF sigma_xy')
args = parser.parse_args()
gpu_id = args.gpu_id
os.environ["CUDA_VISIBLE_DEVICES"] = gpu_id
save_path = os.path.join(args.SAVEpath,args.session_name)
print("dloss weight", args.densecrfloss)
critersion = torch.nn.CrossEntropyLoss(weight=None, ignore_index=255, reduction='elementwise_mean').cuda()
DenseEnergyLosslayer = DenseEnergyLoss(weight=args.densecrfloss, sigma_rgb=args.sigma_rgb,
sigma_xy=args.sigma_xy, scale_factor=args.rloss_scale)
model = getattr(importlib.import_module(args.network), 'SegNet')()
pyutils.Logger(args.session_name + '.log')
print(vars(args))
max_step = args.max_step
batch_size = args.batch_size
img_list = mytool.read_file(args.LISTpath)
data_list = []
for i in range(int(max_step//100)):
np.random.shuffle(img_list)
data_list.extend(img_list)
param_groups = model.get_parameter_groups()
optimizer = torchutils.PolyOptimizer_cls([
{'params': param_groups[0], 'lr': args.lr, 'weight_decay': args.wt_dec},
{'params': param_groups[1], 'lr': 2*args.lr, 'weight_decay': 0},
{'params': param_groups[2], 'lr': 10*args.lr, 'weight_decay': args.wt_dec},
{'params': param_groups[3], 'lr': 20*args.lr, 'weight_decay': 0}
], lr=args.lr, weight_decay=args.wt_dec, max_step=max_step)
weights_dict = torch.load(args.weights)
model.load_state_dict(weights_dict, strict=False)
model = torch.nn.DataParallel(model).cuda()
model.train()
avg_meter = pyutils.AverageMeter('loss')
timer = pyutils.Timer("Session started: ")
data_gen = mytool.chunker(data_list, batch_size)
for iter in range(max_step + 1):
chunk = data_gen.__next__()
img_list = chunk
images, ori_images, label, croppings = mytool.get_data_from_chunk_v2(chunk,args)
b, _, w, h = ori_images.shape
c = args.class_numbers
label = label.cuda(non_blocking=True)
x_f, cam, seg, seg_feature = model(images)
cam_up = compute_cam_up(cam, label, w, h, b)
seg_label = np.zeros((b,w,h))
for i in range(b):
cam_up_single = cam_up[i]
cam_label = label[i].cpu().numpy()
ori_img = ori_images[i].transpose(1,2,0).astype(np.uint8)
norm_cam = cam_up_single/(np.max(cam_up_single, (1, 2), keepdims=True) + 1e-5)
seg_label[i] = compute_seg_label(ori_img, cam_label, norm_cam)
closs = F.multilabel_soft_margin_loss(x_f, label)
BCD_loss = mytool.compute_dis_no_batch(seg, seg_feature)
celoss, dloss = compute_joint_loss(ori_images, seg, seg_label, croppings, critersion, DenseEnergyLosslayer)
loss = closs + celoss + dloss + BCD_loss
print('closs: %.4f'% closs.item(),'celoss: %.4f'%celoss.item(), 'dloss: %.4f'%dloss.item(),
'BCDloss: %.4f'%BCD_loss.item())
avg_meter.add({'loss': loss.item()})
optimizer.zero_grad()
loss.backward()
optimizer.step()
if (optimizer.global_step - 1) % 50 == 0:
timer.update_progress(optimizer.global_step / max_step)
print('Iter:%5d/%5d' % (optimizer.global_step - 1, max_step),
'Loss:%.4f' % (avg_meter.pop('loss')),
'imps:%.1f' % ((iter + 1) * args.batch_size / timer.get_stage_elapsed()),
'Fin:%s' % (timer.str_est_finish()),
'lr: %.4f' % (optimizer.param_groups[0]['lr']), flush=True)
if (optimizer.global_step - 1) % 2000 == 0 and optimizer.global_step > 10000:
torch.save(model.module.state_dict(), save_path + '%d.pth' % (optimizer.global_step - 1))
torch.save(model.module.state_dict(), args.session_name + 'final.pth')