-
Notifications
You must be signed in to change notification settings - Fork 0
/
DCGAN.py
267 lines (211 loc) · 14.9 KB
/
DCGAN.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
import os
from glob import glob
import tensorflow as tf
import numpy as np
from six.moves import xrange
# from ops import *
# from utils import *
class DCGAN(object):
def __init__(self, sess):
self.sess = sess
self.data = glob(os.path.join("./", 'wikiart',
'*.jpg'))
self.sample_dir = 'samples'
if not os.path.exists(self.sample_dir):
print('NO sample directory => Making sample directory')
os.makedirs(self.sample_dir)
def build_model(self):
## Creating a variable
self.real_image = tf.placeholder(tf.float32, [64, 256, 256, 3], name='real_images')
self.random_noise = tf.placeholder(tf.float32, [None, 100], name='random_noise')
#### tensorboard
self.random_noise_summary = tf.summary.histogram("random_noise_summary", self.random_noise)
## model build
# Creating generator / discriminator
self.generator = self.generator(self.random_noise)
self.discriminator_police_sigmoid, self.discriminator_police = self.discriminator(self.real_image, reuse=False)
self.discriminator_thief_sigmoid, self.discriminator_thief = self.discriminator(self.generator, reuse=True)
self.sampler = self.sampler(self.random_noise)
#### tensorboard
self.discriminator_police_summary = tf.summary.histogram("discriminator_police_summary",
self.discriminator_police_sigmoid)
self.discriminator_thief_summary = tf.summary.histogram("discriminator_thief_summary",
self.discriminator_thief_sigmoid)
self.generator_summary = tf.summary.image("generator_summary", self.generator)
## Creating loss function - Find cost
# real discriminator cost
self.discriminator_police_loss = tf.reduce_mean(
tf.nn.sigmoid_cross_entropy_with_logits(logits=self.discriminator_police,
labels=tf.ones_like(self.discriminator_police_sigmoid)))
# fake discriminator cost
self.discriminator_thief_loss = tf.reduce_mean(
tf.nn.sigmoid_cross_entropy_with_logits(logits=self.discriminator_thief,
labels=tf.zeros_like(self.discriminator_thief_sigmoid)))
#### tensorboard
self.discriminator_police_loss_summary = tf.summary.scalar("discriminator_police_loss_summary",
self.discriminator_police_loss)
self.discriminator_thief_loss_summary = tf.summary.scalar("discriminator_thief_loss_summary",
self.discriminator_thief_loss)
# generator cost
self.generator_loss = tf.reduce_mean(
tf.nn.sigmoid_cross_entropy_with_logits(logits=self.discriminator_thief,
labels=tf.ones_like(self.discriminator_thief_sigmoid)))
# discriminator cost
self.discriminator_loss = self.discriminator_police_loss + self.discriminator_thief_loss
#### tensorboard
self.generator_loss_summary = tf.summary.scalar("generator_loss_summary", self.generator_loss)
self.discriminator_loss_summary = tf.summary.scalar("discriminator_loss_summary", self.discriminator_loss)
t_vars = tf.trainable_variables()
self.discriminator_vars = [var for var in t_vars if 'd_' in var.name]
self.generator_vars = [var for var in t_vars if 'g_' in var.name]
self.saver = tf.train.Saver()
def train(self):
# Creating Optimizer
discriminator_optimizer = tf.train.AdamOptimizer(1e-4, beta1=0.7).minimize(self.discriminator_loss,
var_list=self.discriminator_vars)
generator_optimizer = tf.train.AdamOptimizer(1e-4, beta1=0.7).minimize(self.generator_loss,
var_list=self.generator_vars)
#### tensorboard
generator_optimizer_summary = tf.summary.merge(
[self.random_noise_summary, self.discriminator_thief_summary, self.generator_summary,
self.discriminator_thief_loss_summary, self.generator_loss_summary])
discriminator_optimizer_summary = tf.summary.merge(
[self.random_noise_summary, self.discriminator_police_summary,
self.discriminator_police_loss_summary, self.discriminator_loss_summary])
self.writer = tf.summary.FileWriter("./logs", self.sess.graph)
tf.global_variables_initializer().run()
## Creating sample -> test part
sample_random_noise = np.random.uniform(-1, 1, size=(64, 100))
sample_images_path = self.data[0: 64]
sample_images_ = [get_image(sample_image_path,
input_height=256,
input_width=256,
resize_height=256,
resize_width=256,
crop=False) for sample_image_path in sample_images_path]
sample_images = np.array(sample_images_).astype(np.float32)
# checkpoint variable
counter = 1
# checkpoint load
# checkpoint_dir_path = os.path.join(self.checkpoint_dir, self.checkpint_dir_model)
drive_checkpoint_dir = 'drive/My Drive/checkpoint/DCGAN'
checkpoint_model = 'wikiart'
checkpoint_dir_path = os.path.join(drive_checkpoint_dir, checkpoint_model)
could_load, checkpoint_counter = checkpoint_load(self.sess, self.saver, drive_checkpoint_dir, checkpoint_model)
if could_load:
counter = checkpoint_counter
print(" [*] Load SUCCESS")
else:
print(" [!] Load failed...")
## training
for epoch in xrange(35):
batch_index = min(len(self.data), np.inf) // 64
for index in xrange(0, batch_index):
## Creating batch -> training part
batch_images_path = self.data[index * 64: (index + 1) * 64]
batch_images_ = [get_image(batch_image_path,
input_height=256,
input_width=256,
resize_height=256,
resize_width=256,
crop=False) for batch_image_path in batch_images_path]
batch_images = np.array(batch_images_).astype(np.float32)
batch_random_noise = np.random.uniform(-1, 1, [64, 100]).astype(np.float32)
## Update
# Update D network
_, summary = self.sess.run([discriminator_optimizer, discriminator_optimizer_summary],
feed_dict={self.real_image: batch_images,
self.random_noise: batch_random_noise})
self.writer.add_summary(summary, counter)
# Update G network
_, summary = self.sess.run([generator_optimizer, generator_optimizer_summary],
feed_dict={self.random_noise: batch_random_noise})
self.writer.add_summary(summary, counter)
# Run g_optim twice to make sure that d_loss does not go to zero (different from paper)
_, summary = self.sess.run([generator_optimizer, generator_optimizer_summary],
feed_dict={self.random_noise: batch_random_noise})
self.writer.add_summary(summary, counter)
errD_fake = self.discriminator_thief_loss.eval({self.random_noise: batch_random_noise})
errD_real = self.discriminator_police_loss.eval({self.real_image: batch_images})
errG = self.generator_loss.eval({self.random_noise: batch_random_noise})
# global value --> checkpoint value
counter += 1
# if np.mod(counter, 10) == 1:
print("Epoch: [%2d/%2d] [%4d/%4d] , d_loss: %.8f, g_loss: %.8f" % (
epoch, 25, index, batch_index, errD_fake + errD_real, errG))
if np.mod(counter, 100) == 1:
try:
samples, d_loss, g_loss = self.sess.run(
[self.sampler, self.discriminator_loss, self.generator_loss],
feed_dict={self.random_noise: sample_random_noise,
self.real_image: sample_images, }, )
save_images(samples, image_manifold_size(samples.shape[0]),
'./{}/train_{:02d}_{:04d}.png'.format('samples', epoch, index))
print("[SAVE IMAGE] d_loss: %.8f, g_loss: %.8f" % (d_loss, g_loss))
except Exception as e:
print("image save error! ", e)
## checkpoint save
if np.mod(counter, 500) == 1:
print("[SAVE CHECKPOINT]")
checkpoint_save(self.sess, self.saver, checkpoint_dir_path, counter)
def discriminator(self, input_, reuse=False):
with tf.variable_scope("discriminator") as scope:
if reuse:
scope.reuse_variables()
discriminator_layer0 = lrelu(conv2d(input_, 32, name='d_h0_conv')) # [256, 256, 3], 32 => (128, 128, 32)
discriminator_layer1 = lrelu(
batch_norm(conv2d(discriminator_layer0, 64, name='d_h1_conv'), 'd_bn1')) # (?, 64, 64, 64)
discriminator_layer2 = lrelu(
batch_norm(conv2d(discriminator_layer1, 128, name='d_h2_conv'), 'd_bn2')) # (?, 32, 32, 128)
discriminator_layer3 = lrelu(
batch_norm(conv2d(discriminator_layer2, 256, name='d_h3_conv'), 'd_bn3')) # (?, 16, 16, 256)
discriminator_layer4 = lrelu(
batch_norm(conv2d(discriminator_layer3, 512, name='d_h4_conv'), 'd_bn4')) # (?, 8, 8, 512)
discriminator_layer5 = lrelu(
batch_norm(conv2d(discriminator_layer4, 512, name='d_h5_conv'), 'd_bn5')) # (?, 4, 4, 512)
shape = np.product(discriminator_layer5.get_shape()[1:].as_list())
discriminator_layer6 = tf.reshape(discriminator_layer5, [-1, shape])
discriminator_output = linear(discriminator_layer6, 1, 'd_ro_lin') # (?, 1)
# discriminator_layer0 = lrelu(conv2d(input_, 128, name='d_h0_conv')) # (64, 64, 64, 3), 128 -> (?, 32, 32, 128)
# discriminator_layer1 = lrelu(batch_norm(conv2d(discriminator_layer1, 256, name='d_h1_conv'), 'd_bn1')) # (?, 32, 32, 128), 256 -> (?, 16, 16, 256)
# discriminator_layer2 = lrelu(batch_norm(conv2d(discriminator_layer2, 512, name='d_h2_conv'), 'd_bn2')) # (?, 16, 16, 256), 512 -> (?, 8, 8, 512)
# discriminator_layer3 = lrelu(batch_norm(conv2d(discriminator_layer3, 1024, name='d_h3_conv'), 'd_bn3')) # (?, 8, 8, 512), 1024 -> (?, 4, 4, 1024)
# discriminator_output = linear(tf.reshape(discriminator_layer5, [64, -1]), 1, 'd_h4_lin') # (64, 1)
return tf.nn.sigmoid(discriminator_output), discriminator_output # (64, 1)
def generator(self, random_noise):
with tf.variable_scope("generator") as scope:
generator_linear = linear(random_noise, 64 * 16 * 4 * 4, 'g_h0_lin') # (?, 100), 16,384 -> (100, 16,384)
generator_reshape = tf.reshape(generator_linear, [-1, 4, 4, 64 * 16]) # (?, 4, 4, 1024)
generator_input = tf.nn.relu(batch_norm(generator_reshape, 'g_bn0')) # (?, 4, 4, 1024)
generator_layer1 = deconv2d(generator_input, [64, 8, 8, 64 * 16], name='g_layer1') # (?, 8, 8, 512)
generator_layer1 = tf.nn.relu(batch_norm(generator_layer1, 'g_bn1')) # (?, 8, 8, 512)
generator_layer2 = deconv2d(generator_layer1, [64, 16, 16, 64 * 8], name='g_layer2') # (?, 16, 16, 256)
generator_layer2 = tf.nn.relu(batch_norm(generator_layer2, 'g_bn2')) # (?, 16, 16, 256)
generator_layer3 = deconv2d(generator_layer2, [64, 32, 32, 64 * 4], name='g_layer3') # (?, 32, 32, 128)
generator_layer3 = tf.nn.relu(batch_norm(generator_layer3, 'g_bn3')) # (?, 32, 32, 128)
generator_layer4 = deconv2d(generator_layer3, [64, 64, 64, 64 * 2], name='g_layer4') # (?, 64, 64, 128)
generator_layer4 = tf.nn.relu(batch_norm(generator_layer4, 'g_bn4')) # (?, 64, 64, 128)
generator_layer5 = deconv2d(generator_layer4, [64, 128, 128, 64], name='g_layer5') # (?, 128, 128, 64)
generator_layer5 = tf.nn.relu(batch_norm(generator_layer5, 'g_bn5')) # (?, 128, 128, 64)
generator_output = deconv2d(generator_layer5, [64, 256, 256, 3], name='g_output') # (?, 256, 256, 3)
generator_output = tf.nn.tanh(generator_output) # (?, 256, 256, 3)
return generator_output # (?, 64, 64, 3)
def sampler(self, random_noise):
with tf.variable_scope("generator") as scope:
scope.reuse_variables()
sampler_linear = linear(random_noise, 64 * 16 * 4 * 4, 'g_h0_lin') # (?, 100), 16,384 -> (100, 16,384)
sampler_reshape = tf.reshape(sampler_linear, [-1, 4, 4, 64 * 16]) # (?, 4, 4, 1024)
sampler_input = tf.nn.relu(batch_norm(sampler_reshape, 'g_bn0', train=False)) # (?, 4, 4, 1024)
sampler_layer1 = deconv2d(sampler_input, [64, 8, 8, 64 * 16], name='g_layer1') # (?, 8, 8, 512)
sampler_layer1 = tf.nn.relu(batch_norm(sampler_layer1, 'g_bn1', train=False)) # (?, 8, 8, 512)
sampler_layer2 = deconv2d(sampler_layer1, [64, 16, 16, 64 * 8], name='g_layer2') # (?, 16, 16, 256)
sampler_layer2 = tf.nn.relu(batch_norm(sampler_layer2, 'g_bn2', train=False)) # (?, 16, 16, 256)
sampler_layer3 = deconv2d(sampler_layer2, [64, 32, 32, 64 * 4], name='g_layer3') # (?, 32, 32, 128)
sampler_layer3 = tf.nn.relu(batch_norm(sampler_layer3, 'g_bn3', train=False)) # (?, 32, 32, 128)
sampler_layer4 = deconv2d(sampler_layer3, [64, 64, 64, 64 * 2], name='g_layer4') # (?, 64, 64, 128)
sampler_layer4 = tf.nn.relu(batch_norm(sampler_layer4, 'g_bn4', train=False)) # (?, 64, 64, 128)
sampler_layer5 = deconv2d(sampler_layer4, [64, 128, 128, 64], name='g_layer5') # (?, 128, 128, 64)
sampler_layer5 = tf.nn.relu(batch_norm(sampler_layer5, 'g_bn5', train=False)) # (?, 128, 128, 64)
sampler_output = deconv2d(sampler_layer5, [64, 256, 256, 3], name='g_output') # (?, 256, 256, 3)
sampler_output = tf.nn.tanh(sampler_output) # (?, 256, 256, 3)
return sampler_output # (?, 64, 64, 3)