forked from confluentinc/kafka-streams-examples
-
Notifications
You must be signed in to change notification settings - Fork 0
/
WordCountInteractiveQueriesExample.java
221 lines (203 loc) · 9.96 KB
/
WordCountInteractiveQueriesExample.java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
/*
* Copyright Confluent Inc.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package io.confluent.examples.streams.interactivequeries;
import org.apache.kafka.common.serialization.Serde;
import org.apache.kafka.common.serialization.Serdes;
import org.apache.kafka.streams.KafkaStreams;
import org.apache.kafka.streams.StreamsConfig;
import org.apache.kafka.streams.kstream.KGroupedStream;
import org.apache.kafka.streams.kstream.KStream;
import org.apache.kafka.streams.kstream.KStreamBuilder;
import org.apache.kafka.streams.kstream.TimeWindows;
import java.io.File;
import java.nio.file.Files;
import java.util.Arrays;
import java.util.Properties;
/**
* Demonstrates using the KafkaStreams API to locate and query State Stores (Interactive Queries). This
* example uses the same Topology as {@link io.confluent.examples.streams.WordCountLambdaExample} so
* please see that for the full explanation of the topology.
*
* Note: This example uses Java 8 functionality and thus works with Java 8+ only. But of course you
* can use the Interactive Queries feature of Kafka Streams also with Java 7.
*
* In this example, the input stream reads from a topic named "TextLinesTopic", where the values of
* messages represent lines of text; and the histogram output is exposed via two State Stores:
* word-count (KeyValue) and windowed-word-count (Windowed Store).
*
* The word-count store contains the all time word-count. The windowed-word-count contains per
* minute word-counts.
*
* Note: Before running this example you must 1) create the source topic (e.g. via `kafka-topics
* --create ...`), then 2) start this example and 3) write some data to the source topic (e.g. via
* `kafka-console-producer`). Otherwise you won't see any data arriving in the output topic.
*
*
* HOW TO RUN THIS EXAMPLE
*
* 1) Start Zookeeper and Kafka. Please refer to <a href='http://docs.confluent.io/current/quickstart.html#quickstart'>QuickStart</a>.
*
* 2) Create the input and output topics used by this example.
*
* <pre>
* {@code
* $ bin/kafka-topics --create --topic TextLinesTopic \
* --zookeeper localhost:2181 --partitions 3 --replication-factor 1
* }
* </pre>
*
* Note: The above commands are for the Confluent Platform. For Apache Kafka it should be
* `bin/kafka-topics.sh ...`.
*
*
* 3) Start two instances of this example application either in your IDE or on the command line.
*
* If via the command line please refer to <a href='https://github.com/confluentinc/kafka-streams-examples#packaging-and-running'>Packaging</a>.
*
* Once packaged you can then start the first instance of the application (on port 7070):
*
* <pre>
* {@code
* $ java -cp target/kafka-streams-examples-3.3.0-standalone.jar \
* io.confluent.examples.streams.interactivequeries.WordCountInteractiveQueriesExample 7070
* }
* </pre>
*
* Here, `7070` sets the port for the REST endpoint that will be used by this application instance.
*
* Then, in a separate terminal, run the second instance of this application (on port 7071):
*
* <pre>
* {@code
* $ java -cp target/kafka-streams-examples-3.3.0-standalone.jar \
* io.confluent.examples.streams.interactivequeries.WordCountInteractiveQueriesExample 7071
* }
* </pre>
*
*
* 4) Write some input data to the source topics (e.g. via {@link WordCountInteractiveQueriesDriver}). The
* already running example application (step 3) will automatically process this input data
*
*
* 5) Use your browser to hit the REST endpoint of the app instance you started in step 3 to query
* the state managed by this application. Note: If you are running multiple app instances, you can
* query them arbitrarily -- if an app instance cannot satisfy a query itself, it will fetch the
* results from the other instances.
*
* For example:
*
* <pre>
* {@code
* # List all running instances of this application
* http://localhost:7070/state/instances
*
* # List app instances that currently manage (parts of) state store "word-count"
* http://localhost:7070/state/instances/word-count
*
* # Get all key-value records from the "word-count" state store hosted on a the instance running
* # localhost:7070
* http://localhost:7070/state/keyvalues/word-count/all
*
* # Find the app instance that contains key "hello" (if it exists) for the state store "word-count"
* http://localhost:7070/state/instance/word-count/hello
*
* # Get the latest value for key "hello" in state store "word-count"
* http://localhost:7070/state/keyvalue/word-count/hello
* }
* </pre>
*
* Note: that the REST functionality is NOT part of Kafka Streams or its API. For demonstration
* purposes of this example application, we decided to go with a simple, custom-built REST API that
* uses the Interactive Queries API of Kafka Streams behind the scenes to expose the state stores of
* this application via REST.
*
* 6) Once you're done with your experiments, you can stop this example via `Ctrl-C`. If needed,
* also stop the Kafka broker (`Ctrl-C`), and only then stop the ZooKeeper instance (`Ctrl-C`).
*
* If you like you can run multiple instances of this example by passing in a different port. You
* can then experiment with seeing how keys map to different instances etc.
*/
public class WordCountInteractiveQueriesExample {
static final String TEXT_LINES_TOPIC = "TextLinesTopic";
public static void main(String[] args) throws Exception {
if (args.length == 0 || args.length > 2) {
throw new IllegalArgumentException("usage: ... <portForRestEndPoint> [<bootstrap.servers> (optional)]");
}
final int port = Integer.valueOf(args[0]);
final String bootstrapServers = args.length > 1 ? args[1] : "localhost:9092";
Properties streamsConfiguration = new Properties();
// Give the Streams application a unique name. The name must be unique in the Kafka cluster
// against which the application is run.
streamsConfiguration.put(StreamsConfig.APPLICATION_ID_CONFIG, "interactive-queries-example");
streamsConfiguration.put(StreamsConfig.CLIENT_ID_CONFIG, "interactive-queries-example-client");
// Where to find Kafka broker(s).
streamsConfiguration.put(StreamsConfig.BOOTSTRAP_SERVERS_CONFIG, bootstrapServers);
// Provide the details of our embedded http service that we'll use to connect to this streams
// instance and discover locations of stores.
streamsConfiguration.put(StreamsConfig.APPLICATION_SERVER_CONFIG, "localhost:" + port);
final File example = Files.createTempDirectory(new File("/tmp").toPath(), "example").toFile();
streamsConfiguration.put(StreamsConfig.STATE_DIR_CONFIG, example.getPath());
final KafkaStreams streams = createStreams(streamsConfiguration);
// Always (and unconditionally) clean local state prior to starting the processing topology.
// We opt for this unconditional call here because this will make it easier for you to play around with the example
// when resetting the application for doing a re-run (via the Application Reset Tool,
// http://docs.confluent.io/current/streams/developer-guide.html#application-reset-tool).
//
// The drawback of cleaning up local state prior is that your app must rebuilt its local state from scratch, which
// will take time and will require reading all the state-relevant data from the Kafka cluster over the network.
// Thus in a production scenario you typically do not want to clean up always as we do here but rather only when it
// is truly needed, i.e., only under certain conditions (e.g., the presence of a command line flag for your app).
// See `ApplicationResetExample.java` for a production-like example.
streams.cleanUp();
// Now that we have finished the definition of the processing topology we can actually run
// it via `start()`. The Streams application as a whole can be launched just like any
// normal Java application that has a `main()` method.
streams.start();
// Start the Restful proxy for servicing remote access to state stores
final WordCountInteractiveQueriesRestService restService = startRestProxy(streams, port);
// Add shutdown hook to respond to SIGTERM and gracefully close Kafka Streams
Runtime.getRuntime().addShutdownHook(new Thread(() -> {
try {
streams.close();
restService.stop();
} catch (Exception e) {
// ignored
}
}));
}
static WordCountInteractiveQueriesRestService startRestProxy(final KafkaStreams streams, final int port)
throws Exception {
final WordCountInteractiveQueriesRestService
wordCountInteractiveQueriesRestService = new WordCountInteractiveQueriesRestService(streams);
wordCountInteractiveQueriesRestService.start(port);
return wordCountInteractiveQueriesRestService;
}
static KafkaStreams createStreams(final Properties streamsConfiguration) {
final Serde<String> stringSerde = Serdes.String();
KStreamBuilder builder = new KStreamBuilder();
KStream<String, String>
textLines = builder.stream(stringSerde, stringSerde, TEXT_LINES_TOPIC);
final KGroupedStream<String, String> groupedByWord = textLines
.flatMapValues(value -> Arrays.asList(value.toLowerCase().split("\\W+")))
.groupBy((key, word) -> word, stringSerde, stringSerde);
// Create a State Store for with the all time word count
groupedByWord.count("word-count");
// Create a Windowed State Store that contains the word count for every
// 1 minute
groupedByWord.count(TimeWindows.of(60000), "windowed-word-count");
return new KafkaStreams(builder, streamsConfiguration);
}
}