-
Notifications
You must be signed in to change notification settings - Fork 0
/
extract_fingerprint.py
49 lines (37 loc) · 1.54 KB
/
extract_fingerprint.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
import os
import argparse
import numpy as np
import pandas as pd
from tqdm import tqdm
from rdkit.Chem import AllChem
from ogb.graphproppred import GraphPropPredDataset
def getmorganfingerprint(mol):
return list(AllChem.GetMorganFingerprintAsBitVect(mol, 2))
def getmaccsfingerprint(mol):
fp = AllChem.GetMACCSKeysFingerprint(mol)
return [int(b) for b in fp.ToBitString()]
def main(dataset_name):
dataset = GraphPropPredDataset(name=dataset_name)
df_smi = pd.read_csv(f"dataset/{dataset_name}/mapping/mol.csv.gz".replace("-", "_"))
smiles = df_smi["smiles"]
mgf_feat_list = []
maccs_feat_list = []
for ii in tqdm(range(len(smiles))):
rdkit_mol = AllChem.MolFromSmiles(smiles.iloc[ii])
mgf = getmorganfingerprint(rdkit_mol)
mgf_feat_list.append(mgf)
maccs = getmaccsfingerprint(rdkit_mol)
maccs_feat_list.append(maccs)
mgf_feat = np.array(mgf_feat_list, dtype="int64")
maccs_feat = np.array(maccs_feat_list, dtype="int64")
print("morgan feature shape: ", mgf_feat.shape)
print("maccs feature shape: ", maccs_feat.shape)
save_path = f"./dataset/{dataset_name}".replace("-", "_")
print("saving feature in %s" % save_path)
np.save(os.path.join(save_path, "mgf_feat.npy"), mgf_feat)
np.save(os.path.join(save_path, "maccs_feat.npy"), maccs_feat)
if __name__=="__main__":
parser = argparse.ArgumentParser(description='gnn')
parser.add_argument("--dataset_name", type=str, default="ogbg-molhiv")
args = parser.parse_args()
main(args.dataset_name)