-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathrun_seal_attr.py
430 lines (384 loc) · 19 KB
/
run_seal_attr.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
import argparse
import datetime
import hashlib
import json
import pathlib
import time
from torch import optim
# from torch.utils.tensorboard import SummaryWriter
from seal_attr import *
from utils import *
def load_dataset(root, name):
root = pathlib.Path(root)
prefix = f'{name}-1.90'
with open(root / f'{prefix}.ungraph.txt') as fh:
edges = fh.read().strip().split('\n')
edges = np.array([[int(i) for i in x.split()] for x in edges])
with open(root / f'{prefix}.cmty.txt') as fh:
comms = fh.read().strip().split('\n')
comms = [[int(i) for i in x.split()] for x in comms]
if (root / f'{prefix}.nodefeat.txt').exists():
with open(root / f'{prefix}.nodefeat.txt') as fh:
nodefeats = [x.split() for x in fh.read().strip().split('\n')]
nodefeats = {int(k): [int(i) for i in v] for k, *v in nodefeats}
else:
nodefeats = None
graph = Graph(edges)
return graph, comms, nodefeats, prefix
def split_comms(graph, comms, train_size):
train_comms, test_comms = comms[:train_size], comms[train_size:]
n_valid = max(1, int(train_size * 0.1))
train_comms, valid_comms = train_comms[:-n_valid], train_comms[-n_valid:]
train_comms = [list(x) for nodes in train_comms for x in graph.connected_components(nodes) if len(x) >= 3]
valid_comms = [list(x) for nodes in valid_comms for x in graph.connected_components(nodes) if len(x) >= 3]
max_size = max(len(x) for x in train_comms + valid_comms + test_comms)
return train_comms, valid_comms, test_comms, max_size
def pretrain_g(g: Generator, train_comms, bs, n, writer, use_set=True):
for i in range(n):
np.random.shuffle(train_comms)
batch_loss = 0.
for j in range(len(train_comms) // bs + 1):
batch = train_comms[j*bs:(j+1)*bs]
if len(batch) == 0:
continue
batch = [g.graph.sample_expansion_from_community(x) for x in batch]
if use_set:
policy_loss = g.train_from_sets(batch)
else:
policy_loss = g.train_from_lists(batch)
batch_loss += policy_loss
batch_loss /= j + 1
if use_set:
s = 'Set '
else:
s = 'List'
if writer is not None:
writer.add_scalar(f'Pretrain/GLoss{s.strip()}', batch_loss, i)
print(f'[Pretrain-{s} {i+1:3d}] Loss = {batch_loss:2.4f}')
def pretrain_d(d: Discriminator, train_comms, fn, bs, n, writer):
for i in range(n):
np.random.shuffle(train_comms)
batch_loss = 0.
batch_acc = 0.
for j in range(len(train_comms) // bs + 1):
true_comms = train_comms[j*bs:(j+1)*bs]
if len(true_comms) == 0:
continue
seeds = np.random.choice(d.graph.n_nodes, size=bs, replace=False)
fake_comms = fn(seeds)
fake_comms = [x[:-1] if x[-1] == 'EOS' else x for x in fake_comms]
loss, info = d.train_step(true_comms, fake_comms)
acc = info['acc']
batch_loss += loss
batch_acc += acc
batch_loss /= j + 1
batch_acc /= j + 1
if writer is not None:
writer.add_scalar('Pretrain/DLoss', batch_loss, i)
writer.add_scalar('Pretrain/DAcc', batch_acc, i)
print(f'[Pretrain-D {i+1:3d}] Loss = {batch_loss: .2f} Acc = {batch_acc:.2f}')
def evaluate_and_print(g, eval_seeds, valid_comms, prefix=''):
pred_comms = g.generate(eval_seeds)
pred_comms = [x[:-1] if x[-1] == 'EOS' else x for x in pred_comms]
scores, _ = eval_comms(pred_comms, valid_comms)
precision, recall, f1, jaccard = scores.mean(0)
print(f'[EVAL-{prefix}] F1={f1:.2f} Jaccard={jaccard:.2f} Precision={precision:.2f} Recall={recall:.2f}')
return precision, recall, f1, jaccard
def save_communities(comms, fname):
with open(fname, 'w') as fh:
s = '\n'.join([' '.join([str(i) for i in x]) for x in comms])
fh.write(s)
class DummyWriter:
def add_scalar(self, *args, **kwargs):
pass
def close(self):
pass
class Runner:
def __init__(self, args):
self.args = args
# Data
self.graph, *comms, self.eval_seeds, nodefeats, self.ds_name = self.load_data()
self.train_comms, self.valid_comms, self.test_comms = comms
# Save Dir and Pretrained Dir
self.savedir, self.pretrain_dir, self.writer = self.init_dir()
# Model
self.device = torch.device('cuda:0')
self.g = self.init_g(nodefeats)
self.d = self.init_d(self.g.nodefeats)
self.l = self.init_l(self.g.nodefeats)
self.seen_nodes = {i for x in self.train_comms + self.valid_comms for i in x}
self.selector = Selector(self.g, self.score_fn, args.selector_train_size, args.selector_train_size // 5,
self.seen_nodes, self.savedir, dropout=args.s_dropout)
def close(self):
self.writer.close()
def load_data(self):
args = self.args
graph, comms, nodefeats, ds_name = load_dataset(args.root, args.dataset)
train_comms, valid_comms, test_comms, max_size = split_comms(graph, comms, args.train_size)
args.ds_name = ds_name
args.max_size = max_size
eval_seeds = [min(x) for x in valid_comms] + [max(x) for x in valid_comms]
print(f'[{ds_name}] # Nodes: {graph.n_nodes}', flush=True)
print(f'[# comms] Train: {len(train_comms)} Valid: {len(valid_comms)} Test: {len(test_comms)}', flush=True)
return graph, train_comms, valid_comms, test_comms, eval_seeds, nodefeats, ds_name
def init_dir(self):
args = self.args
savedir = pathlib.Path(args.savedir)
savedir.mkdir(parents=True, exist_ok=True)
# writer = SummaryWriter(savedir / 'tb')
writer = DummyWriter()
with open(savedir / 'settings.json', 'w') as fh:
arg_dict = vars(args)
arg_dict['model'] = 'SEAL_ATTR_v0.1.3'
json.dump(arg_dict, fh, sort_keys=True, indent=4)
pretrain_dir = pathlib.Path('pretrained')
pretrain_dir.mkdir(exist_ok=True)
return savedir, pretrain_dir, writer
def init_g(self, nodefeats):
args = self.args
device = self.device
g_model = Agent(args.hidden_size, args.with_attr).to(device)
g_optimizer = optim.Adam(g_model.parameters(), lr=args.g_lr)
g = Generator(self.graph, g_model, g_optimizer, device,
entropy_coef=args.entropy_coef,
n_rollouts=args.n_rollouts,
max_size=args.max_size,
max_reward=5.)
if args.with_attr:
attr_filename = self.pretrain_dir / f'{self.ds_name}.{g.conv}.{args.hidden_size}.npy'
if attr_filename.exists():
processed_attrs = np.load(str(attr_filename))
g.load_nodefeats(processed_attrs)
print(f'Load the processed node features. Shape={processed_attrs.shape}')
else:
print(f'Process the raw node features.')
processed_attrs = g.preprocess_nodefeats(nodefeats)
g.load_nodefeats(processed_attrs)
np.save(str(attr_filename), processed_attrs)
print(f'Save the feature. Shape={processed_attrs.shape}')
return g
def init_d(self, nodefeats):
args = self.args
d_model = GINClassifier(args.hidden_size, 3, dropout=args.d_dropout, feat_dropout=args.feat_dropout,
norm_type='batch_norm', agg_type='sum',
with_attr=args.with_attr and args.d_use_attr).to(self.device)
d_optimizer = optim.Adam(d_model.parameters(), lr=args.d_lr)
d = Discriminator(self.graph, d_model, d_optimizer,
device=self.device,
log_reward=True,
max_boundary_size=args.max_boundary,
nodefeats=nodefeats)
return d
def init_l(self, nodefeats):
args = self.args
l_model = GINLocator(args.hidden_size, 3, dropout=args.d_dropout, feat_dropout=args.feat_dropout,
norm_type='batch_norm', agg_type='sum',
with_attr=args.with_attr and args.d_use_attr).to(self.device)
l_optimizer = optim.Adam(l_model.parameters(), lr=args.d_lr)
l = Locator(self.graph, l_model, l_optimizer,
device=self.device,
max_boundary_size=args.max_boundary,
nodefeats=nodefeats)
return l
def evaluate_and_print(self, prefix=''):
pred_comms = self.g.generate(self.eval_seeds)
pred_comms = [x[:-1] if x[-1] == 'EOS' else x for x in pred_comms]
scores, _ = eval_comms(pred_comms, self.valid_comms)
precision, recall, f1, jaccard = scores.mean(0)
print(f'[EVAL-{prefix}] F1={f1:.2f} Jaccard={jaccard:.2f} Precision={precision:.2f} Recall={recall:.2f}')
return precision, recall, f1, jaccard
def score_fn(self, cs):
cs = [x[:-1] if x[-1] == 'EOS' else x for x in cs]
v = self.d.score_comms(cs)
if args.locator_coef > 0:
v += args.locator_coef * self.l.score_comms(cs)
if args.radius_penalty > 0:
v -= args.radius_penalty * np.array([self.graph.subgraph_depth(x) for x in cs])
return v
def save(self, fname):
data = {'g': self.g.model.state_dict(),
'd': self.d.model.state_dict(),
'l': self.l.model.state_dict()}
torch.save(data, fname)
def load(self, fname):
data = torch.load(fname)
self.g.model.load_state_dict(data['g'])
self.d.model.load_state_dict(data['d'])
if 'l' in data:
self.l.model.load_state_dict(data['l'])
else:
print('Locator not saved!')
def _pretrain(self):
args = self.args
pretrain_g(self.g, self.train_comms, args.g_batch_size, args.pretrain_list, writer=None, use_set=False)
pretrain_g(self.g, self.train_comms, args.g_batch_size, args.pretrain_set, writer=None, use_set=True)
pretrain_d(self.d, self.train_comms, self.g.generate, args.batch_size, args.pretrain_d, writer=None)
def pretrain(self):
args = self.args
arg_dict = vars(args)
pretrain_related_args = ['pretrain_list', 'pretrain_set', 'pretrain_d', 'hidden_size',
'dataset', 'train_size', 'seed', 'max_size', 'max_boundary',
'g_lr', 'd_lr', 'g_batch_size', 'with_attr', 'd_use_attr', 'ds_name']
code = ' '.join([str(arg_dict[k]) for k in pretrain_related_args])
code = hashlib.md5(code.encode('utf-8')).hexdigest().upper()
print(f'CODE: {code}')
pth_fname = self.pretrain_dir / f'{code}.pth'
if pth_fname.exists():
print('Load the pre-trained model!')
self.load(pth_fname)
else:
self._pretrain()
print('Save the pre-trained model!')
self.save(pth_fname)
def train_g_step(self, g_it):
seeds = np.random.choice(self.graph.n_nodes, size=args.g_batch_size, replace=False)
# Reinforcement Learning
_, r, policy_loss, value_loss, entropy, length = self.g.train_from_rewards(seeds, self.score_fn)
# Teacher Forcing
if not args.without_tf:
true_comms = random.choices(self.train_comms, k=args.g_batch_size)
true_comms = [self.graph.sample_expansion_from_community(x) for x in true_comms]
tf_loss = self.g.train_from_sets(true_comms)
else:
tf_loss = 0.
self.writer.add_scalar('G/Reward', r, g_it)
self.writer.add_scalar('G/PolicyLoss', policy_loss, g_it)
# self.writer.add_scalar('G/ValueLoss', value_loss, g_it)
self.writer.add_scalar('G/Entropy', entropy, g_it)
self.writer.add_scalar('G/Length', length, g_it)
self.writer.add_scalar('G/TFLoss', tf_loss, g_it)
print(f' Reward={r:.2f} PLoss={policy_loss: 2.2f} VLoss={value_loss:2.2f} '
f'Entropy={entropy:1.2f} Length={length:2.1f} '
f'TFLoss={tf_loss: 2.2f}')
def examine_rewards_detail(self, it):
seeds = np.random.choice(self.graph.n_nodes, size=self.args.batch_size, replace=False)
generated_comms = [x[:-1] if x[-1] == 'EOS' else x for x in self.g.generate(seeds)]
r_from_d = self.d.score_comms(generated_comms).mean()
r_from_l = r_penalty = 0.
self.writer.add_scalar('Reward/D', r_from_d, it)
if args.locator_coef > 0:
r_from_l = self.l.score_comms(generated_comms).mean()
self.writer.add_scalar('Reward/L', r_from_l, it)
if args.radius_penalty > 0:
r_penalty = np.array([self.graph.subgraph_depth(x) for x in generated_comms]).mean()
self.writer.add_scalar('Reward/R', r_penalty, it)
total_r = r_from_d + args.locator_coef * r_from_l + args.radius_penalty * r_penalty
self.writer.add_scalar('Reward/All', total_r, it)
def train_d_step(self, d_it):
bs = self.args.batch_size
seeds = np.random.choice(self.graph.n_nodes, size=bs, replace=False)
fake_comms = self.g.generate(seeds)
fake_comms = [x[:-1] if x[-1] == 'EOS' else x for x in fake_comms]
true_comms = random.choices(self.train_comms, k=bs)
d_loss, info = self.d.train_step(true_comms, fake_comms)
d_acc = info['acc']
self.writer.add_scalar('D/Loss', d_loss, d_it)
self.writer.add_scalar('D/Acc', d_acc, d_it)
print(f' Loss={d_loss: .2f} Acc={d_acc:.2f}')
def train_l_step(self, l_it):
args = self.args
bs = args.batch_size
seeds = np.random.choice(self.graph.n_nodes, size=bs, replace=False)
fake_comms = self.g.generate(seeds)
fake_comms = [x[:-1] if x[-1] == 'EOS' else x for x in fake_comms]
true_comms = random.choices(self.train_comms, k=bs)
comms = fake_comms + true_comms
l_p_loss, l_v_loss, l_r = self.l.train_step(comms, self.g.generate)
self.writer.add_scalar('L/PolicyLoss', l_p_loss, l_it)
self.writer.add_scalar('L/ValueLoss', l_v_loss, l_it)
self.writer.add_scalar('L/Reward', l_r, l_it)
print(f' PLoss={l_p_loss: 2.2f} VLoss={l_v_loss:2.2f} Reward={l_r:.2f}')
def run(self):
# Eval before training:
self.evaluate_and_print('Init')
# Pretrain
self.pretrain()
self.evaluate_and_print('Pretrained')
# Train
d_it = g_it = l_it = -1
for i_epoch in range(args.n_epochs):
print('=' * 20)
print(f'[Epoch {i_epoch + 1:4d}]')
tic = time.time()
print('Update D')
for _ in range(args.n_d_updates):
d_it += 1
self.train_d_step(d_it)
if args.locator_coef > 0:
print('Update L')
for _ in range(args.n_l_updates):
l_it += 1
self.train_l_step(l_it)
print('Update G')
for _ in range(args.n_g_updates):
g_it += 1
self.train_g_step(g_it)
toc = time.time()
print(f'Elapsed Time: {toc - tic:.1f}s')
# Eval
if (i_epoch + 1) % args.eval_every == 0:
precision, recall, f1, jaccard = self.evaluate_and_print(f'Epoch {i_epoch+1:4d}')
metrics_string = '_'.join([f'{x * 100:0>2.0f}' for x in [f1, jaccard, precision, recall]])
self.examine_rewards_detail(i_epoch)
self.save(self.savedir / f'{i_epoch + 1:0>5d}_{metrics_string}.pth')
self.writer.add_scalar('Eval/Precision', precision, i_epoch)
self.writer.add_scalar('Eval/Recall', recall, i_epoch)
self.writer.add_scalar('Eval/F1', f1, i_epoch)
self.writer.add_scalar('Eval/Jaccard', jaccard, i_epoch)
if (i_epoch + 1) % args.test_every == 0:
print('=' * 50)
print('[Test]')
pred_comms = self.selector.make_predicition(args.n_outputs, i_epoch)
metric_mat, _ = eval_comms(pred_comms, self.test_comms)
precision, recall, f1, jaccard = metric_mat.mean(0)
metrics_string = '_'.join([f'{x * 100:0>2.0f}' for x in [f1, jaccard, precision, recall]])
print(f'[EVAL-Test] F1={f1:.2f} Jaccard={jaccard:.2f} Precision={precision:.2f} Recall={recall:.2f}')
save_communities(pred_comms, self.savedir / f'cmty.{i_epoch+1:0>4d}_{metrics_string}.txt')
def main(args):
runner = Runner(args)
runner.run()
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--dataset', type=str, default='dblp')
parser.add_argument('--root', type=str, default='datasets')
parser.add_argument('--seed', type=int, default=0)
parser.add_argument('--train_size', type=int, default=500)
parser.add_argument('--n_outputs', type=int, default=5000)
parser.add_argument('--with_attr', action='store_true', default=False)
parser.add_argument('--d_use_attr', action='store_true', default=False)
# Model
parser.add_argument('--hidden_size', type=int, default=64)
parser.add_argument('--g_lr', type=float, default=1e-2)
parser.add_argument('--n_rollouts', type=int, default=5)
parser.add_argument('--entropy_coef', type=float, default=0.)
parser.add_argument('--locator_coef', type=float, default=0.5)
parser.add_argument('--d_lr', type=float, default=1e-2)
parser.add_argument('--d_dropout', type=float, default=0.0)
parser.add_argument('--feat_dropout', type=float, default=0.8)
parser.add_argument('--s_dropout', type=float, default=0.5)
parser.add_argument('--max_boundary', type=int, default=200)
parser.add_argument('--radius_penalty', type=float, default=0.0)
# Train
parser.add_argument('--selector_train_size', type=int, default=5000)
parser.add_argument('--batch_size', type=int, default=32)
parser.add_argument('--g_batch_size', type=int, default=32)
parser.add_argument('--pretrain_list', type=int, default=10)
parser.add_argument('--pretrain_set', type=int, default=25)
parser.add_argument('--pretrain_d', type=int, default=10)
parser.add_argument('--n_epochs', type=int, default=20)
parser.add_argument('--n_g_updates', type=int, default=5)
parser.add_argument('--n_d_updates', type=int, default=5)
parser.add_argument('--n_l_updates', type=int, default=5)
parser.add_argument('--eval_every', type=int, default=1)
parser.add_argument('--test_every', type=int, default=10)
parser.add_argument('--without_tf', action='store_true', default=False)
args = parser.parse_args()
seed_all(args.seed)
print('= ' * 20)
now = datetime.datetime.now()
print(args)
args.savedir = f'ckpts/{args.dataset}/{now.strftime("%Y%m%d%H%M%S")}/'
print('## Starting Time:', now.strftime("%Y-%m-%d %H:%M:%S"), flush=True)
main(args)
print('## Finishing Time:', datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S"), flush=True)
print('= ' * 20)