Skip to content

Latest commit

 

History

History
62 lines (52 loc) · 4.16 KB

nkd.md

File metadata and controls

62 lines (52 loc) · 4.16 KB

NKD and USKD

ICCV 2023 Paper: From Knowledge Distillation to Self-Knowledge Distillation: A Unified Approach with Normalized Loss and Customized Soft Labels

architecture

Train

#single GPU
python tools/train.py configs/distillers/imagenet/res18_sd_img.py

#multi GPU
bash tools/dist_train.sh configs/distillers/imagenet/res34_distill_res18_img.py 8

Transfer

# Tansfer the Distillation model into mmcls model
python pth_transfer.py --dis_path $dis_ckpt --output_path $new_mmcls_ckpt

Test

#single GPU
python tools/test.py configs/resnet/resnet18_8xb32_in1k.py $new_mmcls_ckpt --metrics accuracy

#multi GPU
bash tools/dist_test.sh configs/resnet/resnet18_8xb32_in1k.py $new_mmcls_ckpt 8 --metrics accuracy

Results

NKD

Model Teacher Baseline(Top-1 Acc) +NKD(Top-1 Acc) dis_config weight
ResNet18 ResNet34 69.90 71.96 (+2.06) config baidu/one drive
MobileNet ResNet50 69.21 72.58 (+3.37) config baidu/one drive
DeiT-Tiny DeiT III-Small 74.42 76.68 (+2.26) config
DeiT-Base DeiT III-Large 81.76 84.96 (+3.20) config

USKD

Model Baseline(Top-1 Acc) +tf-NKD(Top-1 Acc) dis_config
MobileNet 69.21 70.38 (+1.17) config
MobileNetV2 71.86 72.41 (+0.55) config
ShuffleNetV2 69.55 70.30 (+0.75) config
ResNet18 69.90 70.79 (+0.89) config
ResNet50 76.55 77.07 (+0.52) config
ResNet101 77.97 78.54 (+0.57) config
RegNetX-1.6GF 76.84 77.30 (+0.46) config
Swin-Tiny 81.18 81.49 (+0.31) config
DeiT-Tiny 74.42 74.97 (+0.55) config

Citation

@inproceedings{yang2023knowledge,
  title={From Knowledge Distillation to Self-Knowledge Distillation: A Unified Approach with Normalized Loss and Customized Soft Labels},
  author={Yang, Zhendong and Zeng, Ailing and Yuan, Chun and Li, Yu},
  booktitle={Proceedings of the IEEE/CVF International Conference on Computer Vision},
  pages={17185--17194},
  year={2023}
}