-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathrun_experiment.py
303 lines (260 loc) · 11 KB
/
run_experiment.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
"""Run Experiment
This script allows to run one federated learning experiment; the experiment name, the method and the
number of clients/tasks should be precised along side with the hyper-parameters of the experiment.
The results of the experiment (i.e., training logs) are written to ./logs/ folder.
This file can also be imported as a module and contains the following function:
* run_experiment - runs one experiments given its arguments
"""
import logging
import sys
from utils.utils import *
from utils.constants import *
from utils.args import *
from datetime import datetime
from torch.utils.tensorboard import SummaryWriter
def init_clients(args_, root_path, logs_root, shared_model=None):
"""
initialize clients from data folders
:param args_:
:param root_path: path to directory containing data folders
:param logs_root: path to logs root
:return: List[Client]
"""
print("===> Building data iterators..")
train_iterators, val_iterators, test_iterators = \
get_loaders(
type_=LOADER_TYPE[args_.dataset_name],
root_path=root_path,
batch_size=args_.bz,
is_validation=args_.validation
)
print("===> Initializing clients..")
clients_ = []
total_train_num = 0
total_val_num = 0
total_test_num = 0
for _, task_id in enumerate(tqdm(train_iterators.keys(), total=len(train_iterators))):
train_iterator = train_iterators[task_id]
val_iterator = val_iterators[task_id]
test_iterator = test_iterators[task_id]
if train_iterator is None or test_iterator is None:
continue
if val_iterator and val_iterator.dataset.indices == test_iterator.dataset.indices:
val_iterator = None
total_train_num += train_iterator.dataset.data.shape[0]
total_val_num += val_iterator.dataset.data.shape[0] if val_iterator is not None else 0
total_test_num += test_iterator.dataset.data.shape[0]
learners_ensemble = \
get_learners_ensemble(
n_learners=args_.n_learners,
name=args_.dataset_name,
device=args_.device,
optimizer_name=args_.optimizer,
scheduler_name=args_.lr_scheduler,
initial_lr=[args_.lr_model, args_.lr_gating],
input_dim=args_.input_dimension,
output_dim=args_.output_dimension,
n_rounds=args_.n_rounds,
seed=args_.seed,
mu=args_.mu,
gated_learner=(args_.method == 'pFedGate'),
alpha=args_.alpha,
beta=args_.beta,
sparse_factor=args_.sparse_factor,
block_wise_prune=(args_.block_wise_prune == 1),
fine_grained_block_split=args_.fine_grained_block_split,
sparse_factor_scheduler=args_.sparse_factor_scheduler,
track_running_stats=args_.track_running_stats,
shared_model=shared_model,
args_=args_
)
logs_path = os.path.join(logs_root, "task_{}".format(task_id))
os.makedirs(logs_path, exist_ok=True)
logger = SummaryWriter(logs_path)
client = get_client(
client_type=CLIENT_TYPE[args_.method],
learners_ensemble=learners_ensemble,
q=args_.q,
train_iterator=train_iterator,
val_iterator=val_iterator,
test_iterator=test_iterator,
logger=logger,
local_steps=args_.local_steps,
tune_locally=args_.locally_tune_clients,
node_id=task_id,
bi_level_opt=args_.bi_level_opt,
)
clients_.append(client)
logging.info(f"total example numbers for train /val /test: {total_train_num} /{total_val_num}/ {total_test_num}")
return clients_
def run_experiment(args_):
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
torch.manual_seed(args_.seed)
random.seed(args_.seed)
np.random.seed(args_.seed)
import multiprocessing
# multiprocessing.set_start_method('spawn')
# multiprocessing.set_start_method('forkserver')
multiprocessing.set_start_method('fork')
if "CUDA_VISIBLE_DEVICES" in os.environ:
args_.__setattr__("os_gpu_id", os.environ["CUDA_VISIBLE_DEVICES"])
if args_.outdir == "":
args_.outdir = os.path.join(os.getcwd(), "exp")
args_.outdir = os.path.join(args_.outdir, args_.expname)
if args_.model_type is not None:
if "track_bn_0" in args_.model_type:
args_.track_running_stats = 0
if "track_bn_1" in args_.model_type:
args_.track_running_stats = 1
# if exist, make directory with given name and time
if os.path.isdir(args_.outdir) and os.path.exists(args_.outdir):
# args_.outdir = args_.outdir + datetime.now().strftime('_%m-%d_%H:%M:%S')
args_.outdir = os.path.join(args_.outdir, "sub_exp" + datetime.now().strftime('_%m-%d_%H:%M:%S'))
if os.path.exists(args_.outdir):
args_.outdir = args_.outdir + "_dup"
# if not, make directory with given name
os.makedirs(args_.outdir)
if args_.verbose > 0:
logging.basicConfig(
level=logging.INFO,
format="%(asctime)s (%(module)s:%(lineno)d) %(levelname)s: %(message)s",
)
else:
logging.basicConfig(
level=logging.WARN,
format="%(asctime)s (%(module)s:%(lineno)d) %(levelname)s: %(message)s",
)
logging.warning("Skip DEBUG/INFO messages")
logger = logging.getLogger()
# create file handler which logs even debug messages
fh = logging.FileHandler(os.path.join(args_.outdir, 'exp_print.log'))
fh.setLevel(logging.DEBUG)
logger_formatter = logging.Formatter("%(asctime)s (%(module)s:%(lineno)d) %(levelname)s: %(message)s")
fh.setFormatter(logger_formatter)
logger.addHandler(fh)
sys.stderr = sys.stdout
try:
import wandb
if "," in args_.expname:
# format: "exp_group_name,job_type,detail_exp_name"
res = args_.expname.split(",")
if len(res) == 2:
exp_name, job_type = res[0], res[1]
group_name = None
if len(res) == 3:
exp_name, job_type, group_name = res[0], res[1], res[2]
else:
exp_name = args_.expname if args_.expname is not "" else None
job_type = group_name = None
wandb.init(project="pFedGate", entity="anonymous_research", config=args_,
group=group_name, job_type=job_type, name=exp_name, notes=args_.notes, reinit=True)
# to capture all python source code files in the current directory and all subdirectories as an artifact
not_log_dirs = ["data", "wandb", "Kmeans_Cython"]
log_codes(wandb.run, outdir=args_.outdir, root='.', exclude_fn=lambda path: path in not_log_dirs)
except ImportError:
logging.warning("not found wandb, will not track wandb related results")
data_dir = get_data_dir(args_.dataset_name)
if "." in args_.dataset_name:
args_.dataset_name = args_.dataset_name.split(".")[0]
if "logs_root" in args_:
logs_root = args_.logs_root
else:
logs_root = os.path.join("logs", args_to_string(args_))
logging.info(f"logs_root is {logs_root}")
logging.info(f"Data dir is {os.path.abspath(data_dir)}")
if args_.lr_model == -1:
logging.info(f"Will adopt the same learning rate for base model and gating layer as {args_.lr_gating}")
args_.lr_model = args_.lr_gating
print("==> Global learner initialization..")
global_learners_ensemble = \
get_learners_ensemble(
n_learners=args_.n_learners,
name=args_.dataset_name,
device=args_.device,
optimizer_name=args_.optimizer,
scheduler_name=args_.lr_scheduler,
initial_lr=[args_.lr_model, args_.lr_gating],
input_dim=args_.input_dimension,
output_dim=args_.output_dimension,
n_rounds=args_.n_rounds,
seed=args_.seed,
mu=args_.mu,
gated_learner=(args_.method == 'pFedGate'),
alpha=args_.alpha,
beta=args_.beta,
sparse_factor=args_.sparse_factor,
block_wise_prune=(args_.block_wise_prune == 1),
fine_grained_block_split=args_.fine_grained_block_split,
track_running_stats=args_.track_running_stats,
args_=args_
)
if args_.online_aggregate == 1:
shared_model = deepcopy(global_learners_ensemble[0].model)
else:
shared_model = None
print("==> Clients initialization..")
clients = init_clients(
args_,
root_path=os.path.join(data_dir, "train"),
logs_root=os.path.join(logs_root, "train"),
shared_model=shared_model
)
if args_.test_unseen_clients == 1:
print("==> Unseen Clients initialization..")
unseen_clients = init_clients(
args_,
root_path=os.path.join(data_dir, "test"),
logs_root=os.path.join(logs_root, "test"),
shared_model=shared_model
)
else:
unseen_clients = []
logs_path = os.path.join(logs_root, "train", "global")
os.makedirs(logs_path, exist_ok=True)
global_train_logger = SummaryWriter(logs_path)
logs_path = os.path.join(logs_root, "test", "global")
os.makedirs(logs_path, exist_ok=True)
global_test_logger = SummaryWriter(logs_path)
if args_.decentralized:
aggregator_type = 'decentralized'
else:
aggregator_type = AGGREGATOR_TYPE[args_.method]
aggregator = \
get_aggregator(
aggregator_type=aggregator_type,
clients=clients,
global_learners_ensemble=global_learners_ensemble,
lr_lambda=args_.lr_lambda,
lr=[args_.lr_model, args_.lr_gating],
q=args_.q,
mu=args_.mu,
communication_probability=args_.communication_probability,
sampling_rate=args_.sampling_rate,
log_freq=args_.log_freq,
global_train_logger=global_train_logger,
global_test_logger=global_test_logger,
test_clients=unseen_clients,
verbose=args_.verbose,
seed=args_.seed,
aggregate_sampled_clients=args_.aggregate_sampled_clients,
online_aggregate=args_.online_aggregate,
outdir=args_.outdir
)
print("Training..")
pbar = tqdm(total=args_.n_rounds)
current_round = 0
# Main loop over args_.n_rounds communication rounds
while current_round <= args_.n_rounds:
# mix() include the 1. broadcast; 2. update clients; 3. aggregate
aggregator.mix()
if aggregator.c_round != current_round:
pbar.update(1)
current_round = aggregator.c_round
if "save_path" in args_:
save_root = os.path.join(args_.save_path)
os.makedirs(save_root, exist_ok=True)
aggregator.save_state(save_root)
if __name__ == "__main__":
args_ = parse_args()
run_experiment(args_)