-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathdatasets.py
427 lines (336 loc) · 11.1 KB
/
datasets.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
import os
import pickle
import string
import torch
from torchvision.datasets import CIFAR10, CIFAR100, EMNIST
from torchvision.transforms import Compose, ToTensor, Normalize
from torch.utils.data import Dataset
import numpy as np
from PIL import Image
class TabularDataset(Dataset):
"""
Constructs a torch.utils.Dataset object from a pickle file;
expects pickle file stores tuples of the form (x, y) where x is vector and y is a scalar
Attributes
----------
data: iterable of tuples (x, y)
Methods
-------
__init__
__len__
__getitem__
"""
def __init__(self, path):
"""
:param path: path to .pkl file
"""
with open(path, "rb") as f:
self.data = pickle.load(f)
def __len__(self):
return len(self.data)
def __getitem__(self, idx):
x, y = self.data[idx]
return torch.tensor(x, dtype=torch.float32), torch.tensor(y, dtype=torch.int64), idx
class SubFEMNIST(Dataset):
"""
Constructs a subset of FEMNIST dataset corresponding to one client;
Initialized with the path to a `.pt` file;
`.pt` file is expected to hold a tuple of tensors (data, targets) storing the images and there corresponding labels.
Attributes
----------
transform
data: iterable of integers
targets
Methods
-------
__init__
__len__
__getitem__
"""
def __init__(self, path):
self.transform = Compose([
ToTensor(),
Normalize((0.1307,), (0.3081,))
])
self.data, self.targets = torch.load(path)
def __len__(self):
return self.data.size(0)
def __getitem__(self, index):
img, target = self.data[index], int(self.targets[index])
img = np.uint8(img.numpy() * 255)
img = Image.fromarray(img, mode='L')
if self.transform is not None:
img = self.transform(img)
return img, target, index
class SubEMNIST(Dataset):
"""
Constructs a subset of EMNIST dataset from a pickle file;
expects pickle file to store list of indices
Attributes
----------
indices: iterable of integers
transform
data
targets
Methods
-------
__init__
__len__
__getitem__
"""
def __init__(self, path, emnist_data=None, emnist_targets=None, transform=None):
"""
:param path: path to .pkl file; expected to store list of indices
:param emnist_data: EMNIST dataset inputs
:param emnist_targets: EMNIST dataset labels
:param transform:
"""
with open(path, "rb") as f:
self.indices = pickle.load(f)
if transform is None:
self.transform =\
Compose([
ToTensor(),
Normalize((0.1307,), (0.3081,))
])
if emnist_data is None or emnist_targets is None:
self.data, self.targets = get_emnist()
else:
self.data, self.targets = emnist_data, emnist_targets
self.data = self.data[self.indices]
self.targets = self.targets[self.indices]
def __len__(self):
return self.data.size(0)
def __getitem__(self, index):
img, target = self.data[index], int(self.targets[index])
img = Image.fromarray(img.numpy(), mode='L')
if self.transform is not None:
img = self.transform(img)
return img, target, index
class SubCIFAR10(Dataset):
"""
Constructs a subset of CIFAR10 dataset from a pickle file;
expects pickle file to store list of indices
Attributes
----------
indices: iterable of integers
transform
data
targets
Methods
-------
__init__
__len__
__getitem__
"""
def __init__(self, path, cifar10_data=None, cifar10_targets=None, transform=None):
"""
:param path: path to .pkl file; expected to store list of indices
:param cifar10_data: Cifar-10 dataset inputs stored as torch.tensor
:param cifar10_targets: Cifar-10 dataset labels stored as torch.tensor
:param transform:
"""
with open(path, "rb") as f:
self.indices = pickle.load(f)
if transform is None:
self.transform = \
Compose([
ToTensor(),
Normalize(
(0.4914, 0.4822, 0.4465),
(0.2023, 0.1994, 0.2010)
)
])
if cifar10_data is None or cifar10_targets is None:
self.data, self.targets = get_cifar10()
else:
self.data, self.targets = cifar10_data, cifar10_targets
self.data = self.data[self.indices]
self.targets = self.targets[self.indices]
def __len__(self):
return self.data.size(0)
def __getitem__(self, index):
img, target = self.data[index], self.targets[index]
img = Image.fromarray(img.numpy())
if self.transform is not None:
img = self.transform(img)
target = target
return img, target, index
class SubCIFAR100(Dataset):
"""
Constructs a subset of CIFAR100 dataset from a pickle file;
expects pickle file to store list of indices
Attributes
----------
indices: iterable of integers
transform
data
targets
Methods
-------
__init__
__len__
__getitem__
"""
def __init__(self, path, cifar100_data=None, cifar100_targets=None, transform=None):
"""
:param path: path to .pkl file; expected to store list of indices:
:param cifar100_data: CIFAR-100 dataset inputs
:param cifar100_targets: CIFAR-100 dataset labels
:param transform:
"""
with open(path, "rb") as f:
self.indices = pickle.load(f)
if transform is None:
self.transform = \
Compose([
ToTensor(),
Normalize(
(0.4914, 0.4822, 0.4465),
(0.2023, 0.1994, 0.2010)
)
])
if cifar100_data is None or cifar100_targets is None:
self.data, self.targets = get_cifar100()
else:
self.data, self.targets = cifar100_data, cifar100_targets
self.data = self.data[self.indices]
self.targets = self.targets[self.indices]
def __len__(self):
return self.data.size(0)
def __getitem__(self, index):
img, target = self.data[index], self.targets[index]
img = Image.fromarray(img.numpy())
if self.transform is not None:
img = self.transform(img)
target = target
return img, target, index
class CharacterDataset(Dataset):
def __init__(self, file_path, chunk_len):
"""
Dataset for next character prediction, each sample represents an input sequence of characters
and a target sequence of characters representing to next sequence of the input
:param file_path: path to .txt file containing the training corpus
:param chunk_len: (int) the length of the input and target sequences
"""
self.all_characters = string.printable
self.vocab_size = len(self.all_characters)
self.n_characters = len(self.all_characters)
self.chunk_len = chunk_len
with open(file_path, 'r') as f:
self.text = f.read()
self.tokenized_text = torch.zeros(len(self.text), dtype=torch.long)
self.inputs = torch.zeros(self.__len__(), self.chunk_len, dtype=torch.long)
self.targets = torch.zeros(self.__len__(), self.chunk_len, dtype=torch.long)
self.__build_mapping()
self.__tokenize()
self.__preprocess_data()
def __tokenize(self):
for ii, char in enumerate(self.text):
self.tokenized_text[ii] = self.char2idx[char]
def __build_mapping(self):
self.char2idx = dict()
for ii, char in enumerate(self.all_characters):
self.char2idx[char] = ii
def __preprocess_data(self):
for idx in range(self.__len__()):
self.inputs[idx] = self.tokenized_text[idx:idx+self.chunk_len]
self.targets[idx] = self.tokenized_text[idx+1:idx+self.chunk_len+1]
def __len__(self):
return max(0, len(self.text) - self.chunk_len)
def __getitem__(self, idx):
return self.inputs[idx], self.targets[idx], idx
def get_emnist():
"""
gets full (both train and test) EMNIST dataset inputs and labels;
the dataset should be first downloaded (see data/emnist/README.md)
:return:
emnist_data, emnist_targets
"""
emnist_path = os.path.join("data", "emnist", "raw_data")
assert os.path.isdir(emnist_path), "Download EMNIST dataset!!"
emnist_train =\
EMNIST(
root=emnist_path,
split="byclass",
download=True,
train=True
)
emnist_test =\
EMNIST(
root=emnist_path,
split="byclass",
download=True,
train=True
)
emnist_data =\
torch.cat([
emnist_train.data,
emnist_test.data
])
emnist_targets =\
torch.cat([
emnist_train.targets,
emnist_test.targets
])
return emnist_data, emnist_targets
def get_cifar10():
"""
gets full (both train and test) CIFAR10 dataset inputs and labels;
the dataset should be first downloaded (see data/emnist/README.md)
:return:
cifar10_data, cifar10_targets
"""
cifar10_path = os.path.join("data", "cifar10", "raw_data")
assert os.path.isdir(cifar10_path), "Download cifar10 dataset!!"
cifar10_train =\
CIFAR10(
root=cifar10_path,
train=True, download=False
)
cifar10_test =\
CIFAR10(
root=cifar10_path,
train=False,
download=False)
cifar10_data = \
torch.cat([
torch.tensor(cifar10_train.data),
torch.tensor(cifar10_test.data)
])
cifar10_targets = \
torch.cat([
torch.tensor(cifar10_train.targets),
torch.tensor(cifar10_test.targets)
])
return cifar10_data, cifar10_targets
def get_cifar100():
"""
gets full (both train and test) CIFAR100 dataset inputs and labels;
the dataset should be first downloaded (see data/cifar100/README.md)
:return:
cifar100_data, cifar100_targets
"""
cifar100_path = os.path.join("data", "cifar100", "raw_data")
assert os.path.isdir(cifar100_path), "Download cifar10 dataset!!"
cifar100_train =\
CIFAR100(
root=cifar100_path,
train=True, download=False
)
cifar100_test =\
CIFAR100(
root=cifar100_path,
train=False,
download=False)
cifar100_data = \
torch.cat([
torch.tensor(cifar100_train.data),
torch.tensor(cifar100_test.data)
])
cifar100_targets = \
torch.cat([
torch.tensor(cifar100_train.targets),
torch.tensor(cifar100_test.targets)
])
return cifar100_data, cifar100_targets