-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsnowboydecoder.py
278 lines (237 loc) · 10.3 KB
/
snowboydecoder.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
#!/usr/bin/env python
import collections
import pyaudio
import snowboydetect
import time
import wave
import os
import logging
from ctypes import *
from contextlib import contextmanager
logging.basicConfig()
logger = logging.getLogger("snowboy")
logger.setLevel(logging.INFO)
TOP_DIR = os.path.dirname(os.path.abspath(__file__))
RESOURCE_FILE = os.path.join(TOP_DIR, "resources/common.res")
DETECT_DING = os.path.join(TOP_DIR, "resources/ding.wav")
DETECT_DONG = os.path.join(TOP_DIR, "resources/dong.wav")
def py_error_handler(filename, line, function, err, fmt):
pass
ERROR_HANDLER_FUNC = CFUNCTYPE(None, c_char_p, c_int, c_char_p, c_int, c_char_p)
c_error_handler = ERROR_HANDLER_FUNC(py_error_handler)
@contextmanager
def no_alsa_error():
try:
asound = cdll.LoadLibrary('libasound.so')
asound.snd_lib_error_set_handler(c_error_handler)
yield
asound.snd_lib_error_set_handler(None)
except:
yield
pass
class RingBuffer(object):
"""Ring buffer to hold audio from PortAudio"""
def __init__(self, size=4096):
self._buf = collections.deque(maxlen=size)
def extend(self, data):
"""Adds data to the end of buffer"""
self._buf.extend(data)
def get(self):
"""Retrieves data from the beginning of buffer and clears it"""
tmp = bytes(bytearray(self._buf))
self._buf.clear()
return tmp
def play_audio_file(fname=DETECT_DING):
"""Simple callback function to play a wave file. By default it plays
a Ding sound.
:param str fname: wave file name
:return: None
"""
ding_wav = wave.open(fname, 'rb')
ding_data = ding_wav.readframes(ding_wav.getnframes())
with no_alsa_error():
audio = pyaudio.PyAudio()
stream_out = audio.open(
format=audio.get_format_from_width(ding_wav.getsampwidth()),
channels=ding_wav.getnchannels(),
rate=ding_wav.getframerate(), input=False, output=True)
stream_out.start_stream()
stream_out.write(ding_data)
time.sleep(0.2)
stream_out.stop_stream()
stream_out.close()
audio.terminate()
class HotwordDetector(object):
"""
Snowboy decoder to detect whether a keyword specified by `decoder_model`
exists in a microphone input stream.
:param decoder_model: decoder model file path, a string or a list of strings
:param resource: resource file path.
:param sensitivity: decoder sensitivity, a float of a list of floats.
The bigger the value, the more senstive the
decoder. If an empty list is provided, then the
default sensitivity in the model will be used.
:param audio_gain: multiply input volume by this factor.
:param apply_frontend: applies the frontend processing algorithm if True.
"""
def __init__(self, decoder_model,
resource=RESOURCE_FILE,
sensitivity=[],
audio_gain=1,
apply_frontend=False):
tm = type(decoder_model)
ts = type(sensitivity)
if tm is not list:
decoder_model = [decoder_model]
if ts is not list:
sensitivity = [sensitivity]
model_str = ",".join(decoder_model)
self.detector = snowboydetect.SnowboyDetect(
resource_filename=resource.encode(), model_str=model_str.encode())
self.detector.SetAudioGain(audio_gain)
self.detector.ApplyFrontend(apply_frontend)
self.num_hotwords = self.detector.NumHotwords()
if len(decoder_model) > 1 and len(sensitivity) == 1:
sensitivity = sensitivity * self.num_hotwords
if len(sensitivity) != 0:
assert self.num_hotwords == len(sensitivity), \
"number of hotwords in decoder_model (%d) and sensitivity " \
"(%d) does not match" % (self.num_hotwords, len(sensitivity))
sensitivity_str = ",".join([str(t) for t in sensitivity])
if len(sensitivity) != 0:
self.detector.SetSensitivity(sensitivity_str.encode())
self.ring_buffer = RingBuffer(
self.detector.NumChannels() * self.detector.SampleRate() * 5)
def start(self, detected_callback=play_audio_file,
interrupt_check=lambda: False,
sleep_time=0.03,
audio_recorder_callback=None,
silent_count_threshold=15,
recording_timeout=100):
"""
Start the voice detector. For every `sleep_time` second it checks the
audio buffer for triggering keywords. If detected, then call
corresponding function in `detected_callback`, which can be a single
function (single model) or a list of callback functions (multiple
models). Every loop it also calls `interrupt_check` -- if it returns
True, then breaks from the loop and return.
:param detected_callback: a function or list of functions. The number of
items must match the number of models in
`decoder_model`.
:param interrupt_check: a function that returns True if the main loop
needs to stop.
:param float sleep_time: how much time in second every loop waits.
:param audio_recorder_callback: if specified, this will be called after
a keyword has been spoken and after the
phrase immediately after the keyword has
been recorded. The function will be
passed the name of the file where the
phrase was recorded.
:param silent_count_threshold: indicates how long silence must be heard
to mark the end of a phrase that is
being recorded.
:param recording_timeout: limits the maximum length of a recording.
:return: None
"""
self._running = True
def audio_callback(in_data, frame_count, time_info, status):
self.ring_buffer.extend(in_data)
play_data = chr(0) * len(in_data)
return play_data, pyaudio.paContinue
with no_alsa_error():
self.audio = pyaudio.PyAudio()
self.stream_in = self.audio.open(
input=True, output=False,
format=self.audio.get_format_from_width(
self.detector.BitsPerSample() / 8),
channels=self.detector.NumChannels(),
rate=self.detector.SampleRate(),
frames_per_buffer=2048,
stream_callback=audio_callback)
if interrupt_check():
logger.debug("detect voice return")
return
tc = type(detected_callback)
if tc is not list:
detected_callback = [detected_callback]
if len(detected_callback) == 1 and self.num_hotwords > 1:
detected_callback *= self.num_hotwords
assert self.num_hotwords == len(detected_callback), \
"Error: hotwords in your models (%d) do not match the number of " \
"callbacks (%d)" % (self.num_hotwords, len(detected_callback))
logger.debug("detecting...")
state = "PASSIVE"
while self._running is True:
if interrupt_check():
logger.debug("detect voice break")
break
data = self.ring_buffer.get()
if len(data) == 0:
time.sleep(sleep_time)
continue
status = self.detector.RunDetection(data)
if status == -1:
logger.warning("Error initializing streams or reading audio data")
#small state machine to handle recording of phrase after keyword
if state == "PASSIVE":
if status > 0: #key word found
self.recordedData = []
self.recordedData.append(data)
silentCount = 0
recordingCount = 0
message = "Keyword " + str(status) + " detected at time: "
message += time.strftime("%Y-%m-%d %H:%M:%S",
time.localtime(time.time()))
logger.info(message)
callback = detected_callback[status-1]
if callback is not None:
callback()
if audio_recorder_callback is not None:
state = "ACTIVE"
continue
elif state == "ACTIVE":
stopRecording = False
if recordingCount > recording_timeout:
stopRecording = True
elif status == -2: #silence found
if silentCount > silent_count_threshold:
stopRecording = True
else:
silentCount = silentCount + 1
elif status == 0: #voice found
silentCount = 0
if stopRecording == True:
fname = self.saveMessage()
audio_recorder_callback(fname)
state = "PASSIVE"
continue
recordingCount = recordingCount + 1
self.recordedData.append(data)
#print("wait")
logger.debug("finished.")
def saveMessage(self):
"""
Save the message stored in self.recordedData to a timestamped file.
"""
filename = 'output' + str(int(time.time())) + '.wav'
data = b''.join(self.recordedData)
#use wave to save data
wf = wave.open(filename, 'wb')
wf.setnchannels(1)
wf.setsampwidth(self.audio.get_sample_size(
self.audio.get_format_from_width(
self.detector.BitsPerSample() / 8)))
wf.setframerate(self.detector.SampleRate())
wf.writeframes(data)
wf.close()
logger.debug("finished saving: " + filename)
return filename
def terminate(self):
"""
Terminate audio stream. Users can call start() again to detect.
:return: None
"""
self.stream_in.stop_stream()
self.stream_in.close()
self.audio.terminate()
self._running = False