-
Notifications
You must be signed in to change notification settings - Fork 77
/
zh_xgb_v2.py
230 lines (198 loc) · 10.7 KB
/
zh_xgb_v2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
import gc
import time
import warnings
import numpy as np
import pandas as pd
import xgboost as xgb
from datetime import datetime
# 特征提取
def get_fea(sku_id, goodsdaily, goodsinfo, goodsale, goods_sku_relation):
fea = pd.DataFrame({'sku_id': sku_id.values})
fea.reset_index(drop=True, inplace=True)
fea = goodsdaily_fea(fea, goodsdaily, goods_sku_relation)
# print(fea.shape[0], fea.shape[1] - 1)
fea = goodsinfo_fea(fea, goodsinfo, goods_sku_relation)
# print(fea.shape[0], fea.shape[1] - 1)
fea = goodsale_sku_slide_fea(fea, goodsale)
# print(fea.shape[0], fea.shape[1] - 1)
fea = goodsale_goods_slide_fea(fea, goodsale, goods_sku_relation)
# print(fea.shape[0], fea.shape[1] - 1)
fea = fea[sorted(fea.columns)]
del fea['sku_id']
gc.collect()
fea = fea.astype(np.float32)
return fea
# goodsdaily表
def goodsdaily_fea(fea, goodsdaily, goods_sku_relation):
for i in [1, 3, 7, 9, 12]:
date_sort = sorted(list(set(goodsdaily['data_date'])))
sub_goodsdaily = goodsdaily[goodsdaily['data_date'] >= date_sort[-i]]
data = sub_goodsdaily.groupby('goods_id')['goods_click', 'cart_click', 'favorites_click', 'sales_uv'].agg(['max', 'min', 'mean', 'count', 'sum']).reset_index()
data.columns = ['goods_id',
'goods_click_max_slide_' + str(i), 'goods_click_min_slide_' + str(i),
'goods_click_mean_slide_' + str(i), 'goods_click_count_slide_' + str(i),
'goods_click_sum_slide_' + str(i),
'cart_click_max_slide_' + str(i), 'cart_click_min_slide_' + str(i),
'cart_click_mean_slide_' + str(i), 'cart_click_count_slide_' + str(i),
'cart_click_sum_slide_' + str(i),
'favorites_click_max_slide_' + str(i), 'favorites_click_min_slide_' + str(i),
'favorites_click_mean_slide_' + str(i), 'favorites_click_count_slide_' + str(i),
'favorites_click_sum_slide_' + str(i),
'sales_uv_max_slide_' + str(i), 'sales_uv_min_slide_' + str(i),
'sales_uv_mean_slide_' + str(i), 'sales_uv_count_slide_' + str(i),
'sales_uv_sum_slide_' + str(i)]
data = pd.merge(goods_sku_relation, data, on=['goods_id'], how='left')
fea = pd.merge(fea, data, on=['sku_id'], how='left')
del fea['goods_id']
del data
del sub_goodsdaily
gc.collect()
fea = fea.fillna(0)
data = goodsdaily.groupby('goods_id')['goods_click', 'cart_click', 'favorites_click', 'sales_uv'].agg(['max', 'min', 'mean', 'sum']).reset_index()
data.columns = ['goods_id',
'goods_click_max', 'goods_click_min', 'goods_click_mean', 'goods_click_sum',
'cart_click_max', 'cart_click_min', 'cart_click_mean', 'cart_click_sum',
'favorites_click_max', 'favorites_click_min', 'favorites_click_mean', 'favorites_click_sum',
'sales_uv_max', 'sales_uv_min', 'sales_uv_mean', 'sales_uv_sum']
data = pd.merge(goods_sku_relation, data, on=['goods_id'], how='left')
fea = pd.merge(fea, data, on=['sku_id'], how='left')
del fea['goods_id']
del data
gc.collect()
fea = fea.fillna(0)
return fea
# goodsinfo表
def goodsinfo_fea(fea, goodsinfo, goods_sku_relation):
data = pd.merge(goods_sku_relation, goodsinfo, on=['goods_id'], how='left')
fea = pd.merge(fea, data, on=['sku_id'], how='left')
del fea['brand_id']
del fea['goods_id']
del fea['cat_level1_id']
del fea['cat_level2_id']
del fea['cat_level3_id']
del fea['cat_level4_id']
del fea['cat_level5_id']
del fea['cat_level6_id']
del fea['cat_level7_id']
gc.collect()
fea = fea.fillna(-999)
return fea
# goodsale表sku滑窗
def goodsale_sku_slide_fea(fea, goodsale):
for i in [1, 2, 3, 5, 7, 9, 12]:
date_sort = sorted(list(set(goodsale['data_date'])))
sub_goodsale = goodsale[goodsale['data_date'] >= date_sort[-i]]
data = sub_goodsale.groupby('sku_id')['goods_num'].agg(['max', 'mean', 'sum']).reset_index()
data.columns = ['sku_id', 'goodsale_sku_max_slide_' + str(i), 'goodsale_sku_mean_slide_' + str(i),
'goodsale_sku_sum_slide_' + str(i)]
fea = pd.merge(fea, data, on=['sku_id'], how='left')
fea['goodsale_sku_sum_slide_%s_rank' % str(i)] = fea['goodsale_sku_sum_slide_' + str(i)].rank()
fea['goodsale_sku_mean_slide_%s_rank' % str(i)] = fea['goodsale_sku_mean_slide_' + str(i)].rank()
fea = fea.fillna(0)
del data
del sub_goodsale
gc.collect()
data = goodsale.groupby('sku_id')['goods_num'].agg(['max', 'mean', 'sum']).reset_index()
data.columns = ['sku_id', 'goodsale_sku_max', 'goodsale_sku_mean', 'goodsale_sku_sum']
fea = pd.merge(fea, data, on=['sku_id'], how='left')
del data
gc.collect()
return fea
# goodsale表goods滑窗
def goodsale_goods_slide_fea(fea, goodsale, goods_sku_relation):
for i in [1, 2, 3, 5, 7, 9, 12]:
date_sort = sorted(list(set(goodsale['data_date'])))
sub_goodsale = goodsale[goodsale['data_date'] >= date_sort[-i]]
data = sub_goodsale.groupby('goods_id')['goods_num'].agg(['sum']).reset_index()
data.columns = ['goods_id', 'goodsale_goods_sum_slide_' + str(i)]
data = pd.merge(goods_sku_relation, data, on=['goods_id'], how='left')
fea = pd.merge(fea, data, on=['sku_id'], how='left')
fea['goodsale_goods_sum_slide_%s_rank' % str(i)] = fea['goodsale_goods_sum_slide_' + str(i)].rank()
fea = fea.fillna(0)
del fea['goods_id']
del sub_goodsale
del data
gc.collect()
data = goodsale.groupby('goods_id')['goods_num'].sum().reset_index(name='goodsale_goods_sum')
data = pd.merge(goods_sku_relation, data, on=['goods_id'], how='left')
fea = pd.merge(fea, data, on=['sku_id'], how='left')
fea = fea.fillna(0)
del fea['goods_id']
del data
gc.collect()
return fea
# 打标签
def get_label(goodsale_label, sku_id):
label_df = pd.DataFrame({'sku_id': sku_id})
date = sorted(list(set(goodsale_label['data_date'])))
for i in range(5):
data = goodsale_label[(goodsale_label['data_date'] >= date[i * 7]) & (goodsale_label['data_date'] <= date[i * 7 + 6])]
data = data.groupby('sku_id')['goods_num'].sum().reset_index(name='goods_num')
data = pd.DataFrame({'sku_id': data['sku_id'], 'week' + str(i + 1): data['goods_num']})
label_df = pd.merge(label_df, data, on=['sku_id'], how='left')
label_df.sort_values(by=['sku_id'], inplace=True)
label_df.fillna(0, inplace=True)
label_df.index = label_df['sku_id']
del label_df['sku_id']
gc.collect()
return label_df
if __name__ == '__main__':
warnings.filterwarnings("ignore")
start_time = datetime.strptime(time.strftime('%Y-%m-%d %H:%M:%S', time.localtime(time.time())), '%Y-%m-%d %H:%M:%S')
# print('start time :', start_time)
goodsdaily = pd.read_csv('./dataset/b/goodsdaily.csv', index_col=False, dtype={'goods_click': np.float32,
'cart_click': np.float32,
'favorites_click': np.float32,
'sales_uv': np.float32,
'onsale_days': np.float32})
goodsinfo = pd.read_csv('./dataset/b/goodsinfo.csv', index_col=False)
goodsale = pd.read_csv('./dataset/b/goodsale.csv', index_col=False, dtype={'goods_num': np.float32})
goods_sku_relation = pd.read_csv('./dataset/b/goods_sku_relation.csv', index_col=False)
submit_example = pd.read_csv('./dataset/b/submit_example_2.csv', index_col=False)
goodsale.goods_price = goodsale.goods_price.map(lambda x: float(str(x).replace(',', '')))
goodsale.orginal_shop_price = goodsale.orginal_shop_price.map(lambda x: float(str(x).replace(',', '')))
X_train = []
y_train = []
fea_regions = [[20170613, 20170811], [20170816, 20171014], [20170819, 20171017], [20170822, 20171020]]
label_regions = [[20170926, 20171030], [20171129, 20180102], [20171202, 20180105], [20171205, 20180108]]
for fea_region, label_region in zip(fea_regions, label_regions):
# print('train %s ing...' % str(fea_regions.index(fea_region) + 1))
label = get_label(goodsale[(goodsale.data_date >= label_region[0]) & (goodsale.data_date <= label_region[1])],
list(set(goodsale[(goodsale.data_date >= fea_region[0]) & (goodsale.data_date <= fea_region[1])]['sku_id'])))
y_train.append(label)
X_train.append(get_fea(label.index,
goodsdaily[(goodsdaily.data_date >= fea_region[0]) & (goodsdaily.data_date <= fea_region[1])],
goodsinfo,
goodsale[(goodsale.data_date >= fea_region[0]) & (goodsale.data_date <= fea_region[1])],
goods_sku_relation))
# print('test ing...')
fea_region = [20180116, 20180316]
X_test = get_fea(submit_example.sku_id,
goodsdaily[(goodsdaily.data_date >= fea_region[0]) & (goodsdaily.data_date <= fea_region[1])],
goodsinfo,
goodsale[(goodsale.data_date >= fea_region[0]) & (goodsale.data_date <= fea_region[1])],
goods_sku_relation)
del goodsdaily;del goodsinfo;del goodsale;del goods_sku_relation
gc.collect()
X_train = pd.concat(X_train, ignore_index=True)
y_train = pd.concat(y_train, ignore_index=True)
# print('X_train', X_train.shape)
# print('X_test', X_test.shape)
# print('model predict')
params = {'booster': 'gbtree', 'objective': 'reg:linear', 'eval_metric': 'rmse', 'eta': 0.02, 'min_child_weight': 18, 'max_depth': 6,
'lambda': 5, 'gamma': 0.1, 'subsample': 0.8, 'colsample_bytree': 0.7, 'colsample_bylevel': 0.8}
result = pd.DataFrame({'sku_id': submit_example['sku_id']})
del submit_example
gc.collect()
for i in [1, 2, 3, 4, 5]:
# print('week %s' % str(i))
dtrain = xgb.DMatrix(X_train.values, label=y_train['week%s' % str(i)])
dtest = xgb.DMatrix(X_test.values)
bst = xgb.train(params, dtrain, num_boost_round=1000)
result['week%s' % str(i)] = bst.predict(dtest)
result = result[result > 0].fillna(0)
result.to_csv('zh_xgb_v2.csv', index=False)
end_time = datetime.strptime(time.strftime('%Y-%m-%d %H:%M:%S', time.localtime(time.time())), '%Y-%m-%d %H:%M:%S')
# print('end time :', end_time)
run_time = end_time - start_time
# print('run time :', run_time)