-
Notifications
You must be signed in to change notification settings - Fork 0
/
lenet_modified_output
453 lines (453 loc) · 15.5 KB
/
lenet_modified_output
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
I0119 11:17:14.989501 6800 caffe.cpp:103] Use CPU.
I0119 11:17:14.989915 6800 caffe.cpp:107] Starting Optimization
I0119 11:17:14.990058 6800 solver.cpp:32] Initializing solver from parameters:
test_iter: 100
test_interval: 500
base_lr: 0.01
display: 100
max_iter: 10
lr_policy: "inv"
gamma: 0.0001
power: 0.75
momentum: 0.9
weight_decay: 0.0005
snapshot: 5000
snapshot_prefix: "examples/mnist/lenet"
solver_mode: CPU
net: "examples/mnist/lenet_train_test.prototxt"
I0119 11:17:14.990116 6800 solver.cpp:67] Creating training net from net file: examples/mnist/lenet_train_test.prototxt
I0119 11:17:14.991256 6800 net.cpp:275] The NetState phase (0) differed from the phase (1) specified by a rule in layer mnist
I0119 11:17:14.991302 6800 net.cpp:275] The NetState phase (0) differed from the phase (1) specified by a rule in layer accuracy
I0119 11:17:14.991466 6800 net.cpp:39] Initializing net from parameters:
name: "LeNet"
layers {
top: "data"
top: "label"
name: "mnist"
type: DATA
data_param {
source: "examples/mnist/mnist_train_lmdb"
batch_size: 64
backend: LMDB
}
include {
phase: TRAIN
}
transform_param {
scale: 0.00390625
}
}
layers {
bottom: "data"
top: "conv1"
name: "conv1"
type: CONVOLUTION
blobs_lr: 1
blobs_lr: 2
convolution_param {
num_output: 20
kernel_size: 5
stride: 1
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
}
}
}
layers {
bottom: "conv1"
top: "pool1"
name: "pool1"
type: POOLING
pooling_param {
pool: MAX
kernel_size: 2
stride: 2
}
}
layers {
bottom: "pool1"
top: "conv2"
name: "conv2"
type: CONVOLUTION
blobs_lr: 1
blobs_lr: 2
convolution_param {
num_output: 50
kernel_size: 5
stride: 1
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
}
}
}
layers {
bottom: "conv2"
top: "pool2"
name: "pool2"
type: POOLING
pooling_param {
pool: MAX
kernel_size: 2
stride: 2
}
}
layers {
bottom: "pool2"
top: "ip1"
name: "ip1"
type: INNER_PRODUCT
blobs_lr: 1
blobs_lr: 2
inner_product_param {
num_output: 500
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
}
}
}
layers {
bottom: "ip1"
top: "ip1"
name: "relu1"
type: RELU
}
layers {
bottom: "ip1"
top: "ip2"
name: "ip2"
type: INNER_PRODUCT
blobs_lr: 1
blobs_lr: 2
inner_product_param {
num_output: 10
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
}
}
}
layers {
bottom: "ip2"
bottom: "label"
top: "loss"
name: "loss"
type: SOFTMAX_LOSS
}
state {
phase: TRAIN
}
I0119 11:17:14.991600 6800 net.cpp:67] Creating Layer mnist
I0119 11:17:14.991621 6800 net.cpp:356] mnist -> data
I0119 11:17:14.991662 6800 net.cpp:356] mnist -> label
I0119 11:17:14.991683 6800 net.cpp:96] Setting up mnist
I0119 11:17:14.997086 6800 data_layer.cpp:68] Opening lmdb examples/mnist/mnist_train_lmdb
I0119 11:17:14.997150 6800 data_layer.cpp:128] output data size: 64,1,28,28
I0119 11:17:14.997449 6800 net.cpp:103] Top shape: 64 1 28 28 (50176)
I0119 11:17:14.997473 6800 net.cpp:103] Top shape: 64 1 1 1 (64)
I0119 11:17:14.997499 6800 net.cpp:67] Creating Layer conv1
I0119 11:17:14.997510 6800 net.cpp:394] conv1 <- data
I0119 11:17:14.997534 6800 net.cpp:356] conv1 -> conv1
I0119 11:17:14.997555 6800 net.cpp:96] Setting up conv1
I0119 11:17:14.998577 6800 net.cpp:103] Top shape: 64 20 24 24 (737280)
I0119 11:17:14.998641 6800 net.cpp:67] Creating Layer pool1
I0119 11:17:14.998653 6800 net.cpp:394] pool1 <- conv1
I0119 11:17:14.998669 6800 net.cpp:356] pool1 -> pool1
I0119 11:17:14.998690 6800 net.cpp:96] Setting up pool1
I0119 11:17:14.998715 6800 net.cpp:103] Top shape: 64 20 12 12 (184320)
I0119 11:17:14.998729 6800 net.cpp:67] Creating Layer conv2
I0119 11:17:14.998739 6800 net.cpp:394] conv2 <- pool1
I0119 11:17:14.998754 6800 net.cpp:356] conv2 -> conv2
I0119 11:17:14.998769 6800 net.cpp:96] Setting up conv2
I0119 11:17:14.999408 6800 net.cpp:103] Top shape: 64 50 8 8 (204800)
I0119 11:17:14.999486 6800 net.cpp:67] Creating Layer pool2
I0119 11:17:14.999500 6800 net.cpp:394] pool2 <- conv2
I0119 11:17:14.999514 6800 net.cpp:356] pool2 -> pool2
I0119 11:17:14.999531 6800 net.cpp:96] Setting up pool2
I0119 11:17:14.999542 6800 net.cpp:103] Top shape: 64 50 4 4 (51200)
I0119 11:17:14.999557 6800 net.cpp:67] Creating Layer ip1
I0119 11:17:14.999572 6800 net.cpp:394] ip1 <- pool2
I0119 11:17:14.999586 6800 net.cpp:356] ip1 -> ip1
I0119 11:17:14.999601 6800 net.cpp:96] Setting up ip1
I0119 11:17:15.008255 6800 net.cpp:103] Top shape: 64 500 1 1 (32000)
I0119 11:17:15.008296 6800 net.cpp:67] Creating Layer relu1
I0119 11:17:15.008307 6800 net.cpp:394] relu1 <- ip1
I0119 11:17:15.008322 6800 net.cpp:345] relu1 -> ip1 (in-place)
I0119 11:17:15.008337 6800 net.cpp:96] Setting up relu1
I0119 11:17:15.008352 6800 net.cpp:103] Top shape: 64 500 1 1 (32000)
I0119 11:17:15.008370 6800 net.cpp:67] Creating Layer ip2
I0119 11:17:15.008380 6800 net.cpp:394] ip2 <- ip1
I0119 11:17:15.008394 6800 net.cpp:356] ip2 -> ip2
I0119 11:17:15.008410 6800 net.cpp:96] Setting up ip2
I0119 11:17:15.008551 6800 net.cpp:103] Top shape: 64 10 1 1 (640)
I0119 11:17:15.008597 6800 net.cpp:67] Creating Layer loss
I0119 11:17:15.008615 6800 net.cpp:394] loss <- ip2
I0119 11:17:15.008626 6800 net.cpp:394] loss <- label
I0119 11:17:15.008649 6800 net.cpp:356] loss -> loss
I0119 11:17:15.008666 6800 net.cpp:96] Setting up loss
I0119 11:17:15.008694 6800 net.cpp:103] Top shape: 1 1 1 1 (1)
I0119 11:17:15.008704 6800 net.cpp:109] with loss weight 1
I0119 11:17:15.008746 6800 net.cpp:170] loss needs backward computation.
I0119 11:17:15.008757 6800 net.cpp:170] ip2 needs backward computation.
I0119 11:17:15.008765 6800 net.cpp:170] relu1 needs backward computation.
I0119 11:17:15.008777 6800 net.cpp:170] ip1 needs backward computation.
I0119 11:17:15.008786 6800 net.cpp:170] pool2 needs backward computation.
I0119 11:17:15.008795 6800 net.cpp:170] conv2 needs backward computation.
I0119 11:17:15.008803 6800 net.cpp:170] pool1 needs backward computation.
I0119 11:17:15.008811 6800 net.cpp:170] conv1 needs backward computation.
I0119 11:17:15.008823 6800 net.cpp:172] mnist does not need backward computation.
I0119 11:17:15.008832 6800 net.cpp:208] This network produces output loss
I0119 11:17:15.008852 6800 net.cpp:467] Collecting Learning Rate and Weight Decay.
I0119 11:17:15.008867 6800 net.cpp:219] Network initialization done.
I0119 11:17:15.008878 6800 net.cpp:220] Memory required for data: 5169924
I0119 11:17:15.009716 6800 solver.cpp:151] Creating test net (#0) specified by net file: examples/mnist/lenet_train_test.prototxt
I0119 11:17:15.009776 6800 net.cpp:275] The NetState phase (1) differed from the phase (0) specified by a rule in layer mnist
I0119 11:17:15.009958 6800 net.cpp:39] Initializing net from parameters:
name: "LeNet"
layers {
top: "data"
top: "label"
name: "mnist"
type: DATA
data_param {
source: "examples/mnist/mnist_test_lmdb"
batch_size: 100
backend: LMDB
}
include {
phase: TEST
}
transform_param {
scale: 0.00390625
}
}
layers {
bottom: "data"
top: "conv1"
name: "conv1"
type: CONVOLUTION
blobs_lr: 1
blobs_lr: 2
convolution_param {
num_output: 20
kernel_size: 5
stride: 1
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
}
}
}
layers {
bottom: "conv1"
top: "pool1"
name: "pool1"
type: POOLING
pooling_param {
pool: MAX
kernel_size: 2
stride: 2
}
}
layers {
bottom: "pool1"
top: "conv2"
name: "conv2"
type: CONVOLUTION
blobs_lr: 1
blobs_lr: 2
convolution_param {
num_output: 50
kernel_size: 5
stride: 1
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
}
}
}
layers {
bottom: "conv2"
top: "pool2"
name: "pool2"
type: POOLING
pooling_param {
pool: MAX
kernel_size: 2
stride: 2
}
}
layers {
bottom: "pool2"
top: "ip1"
name: "ip1"
type: INNER_PRODUCT
blobs_lr: 1
blobs_lr: 2
inner_product_param {
num_output: 500
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
}
}
}
layers {
bottom: "ip1"
top: "ip1"
name: "relu1"
type: RELU
}
layers {
bottom: "ip1"
top: "ip2"
name: "ip2"
type: INNER_PRODUCT
blobs_lr: 1
blobs_lr: 2
inner_product_param {
num_output: 10
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
}
}
}
layers {
bottom: "ip2"
bottom: "label"
top: "accuracy"
name: "accuracy"
type: ACCURACY
include {
phase: TEST
}
}
layers {
bottom: "ip2"
bottom: "label"
top: "loss"
name: "loss"
type: SOFTMAX_LOSS
}
state {
phase: TEST
}
I0119 11:17:15.010148 6800 net.cpp:67] Creating Layer mnist
I0119 11:17:15.010165 6800 net.cpp:356] mnist -> data
I0119 11:17:15.010186 6800 net.cpp:356] mnist -> label
I0119 11:17:15.010227 6800 net.cpp:96] Setting up mnist
I0119 11:17:15.013384 6800 data_layer.cpp:68] Opening lmdb examples/mnist/mnist_test_lmdb
I0119 11:17:15.013432 6800 data_layer.cpp:128] output data size: 100,1,28,28
I0119 11:17:15.013795 6800 net.cpp:103] Top shape: 100 1 28 28 (78400)
I0119 11:17:15.013816 6800 net.cpp:103] Top shape: 100 1 1 1 (100)
I0119 11:17:15.013834 6800 net.cpp:67] Creating Layer label_mnist_1_split
I0119 11:17:15.013844 6800 net.cpp:394] label_mnist_1_split <- label
I0119 11:17:15.013881 6800 net.cpp:356] label_mnist_1_split -> label_mnist_1_split_0
I0119 11:17:15.013916 6800 net.cpp:356] label_mnist_1_split -> label_mnist_1_split_1
I0119 11:17:15.013932 6800 net.cpp:96] Setting up label_mnist_1_split
I0119 11:17:15.013949 6800 net.cpp:103] Top shape: 100 1 1 1 (100)
I0119 11:17:15.013959 6800 net.cpp:103] Top shape: 100 1 1 1 (100)
I0119 11:17:15.013974 6800 net.cpp:67] Creating Layer conv1
I0119 11:17:15.013983 6800 net.cpp:394] conv1 <- data
I0119 11:17:15.014003 6800 net.cpp:356] conv1 -> conv1
I0119 11:17:15.014019 6800 net.cpp:96] Setting up conv1
I0119 11:17:15.014065 6800 net.cpp:103] Top shape: 100 20 24 24 (1152000)
I0119 11:17:15.014094 6800 net.cpp:67] Creating Layer pool1
I0119 11:17:15.014109 6800 net.cpp:394] pool1 <- conv1
I0119 11:17:15.014123 6800 net.cpp:356] pool1 -> pool1
I0119 11:17:15.014137 6800 net.cpp:96] Setting up pool1
I0119 11:17:15.014149 6800 net.cpp:103] Top shape: 100 20 12 12 (288000)
I0119 11:17:15.014173 6800 net.cpp:67] Creating Layer conv2
I0119 11:17:15.014183 6800 net.cpp:394] conv2 <- pool1
I0119 11:17:15.014197 6800 net.cpp:356] conv2 -> conv2
I0119 11:17:15.014216 6800 net.cpp:96] Setting up conv2
I0119 11:17:15.014802 6800 net.cpp:103] Top shape: 100 50 8 8 (320000)
I0119 11:17:15.014849 6800 net.cpp:67] Creating Layer pool2
I0119 11:17:15.014861 6800 net.cpp:394] pool2 <- conv2
I0119 11:17:15.014875 6800 net.cpp:356] pool2 -> pool2
I0119 11:17:15.014889 6800 net.cpp:96] Setting up pool2
I0119 11:17:15.014900 6800 net.cpp:103] Top shape: 100 50 4 4 (80000)
I0119 11:17:15.014919 6800 net.cpp:67] Creating Layer ip1
I0119 11:17:15.014935 6800 net.cpp:394] ip1 <- pool2
I0119 11:17:15.014953 6800 net.cpp:356] ip1 -> ip1
I0119 11:17:15.014977 6800 net.cpp:96] Setting up ip1
I0119 11:17:15.023664 6800 net.cpp:103] Top shape: 100 500 1 1 (50000)
I0119 11:17:15.023704 6800 net.cpp:67] Creating Layer relu1
I0119 11:17:15.023715 6800 net.cpp:394] relu1 <- ip1
I0119 11:17:15.023736 6800 net.cpp:345] relu1 -> ip1 (in-place)
I0119 11:17:15.023749 6800 net.cpp:96] Setting up relu1
I0119 11:17:15.023759 6800 net.cpp:103] Top shape: 100 500 1 1 (50000)
I0119 11:17:15.023774 6800 net.cpp:67] Creating Layer ip2
I0119 11:17:15.023783 6800 net.cpp:394] ip2 <- ip1
I0119 11:17:15.023797 6800 net.cpp:356] ip2 -> ip2
I0119 11:17:15.023811 6800 net.cpp:96] Setting up ip2
I0119 11:17:15.023942 6800 net.cpp:103] Top shape: 100 10 1 1 (1000)
I0119 11:17:15.023968 6800 net.cpp:67] Creating Layer ip2_ip2_0_split
I0119 11:17:15.023983 6800 net.cpp:394] ip2_ip2_0_split <- ip2
I0119 11:17:15.023998 6800 net.cpp:356] ip2_ip2_0_split -> ip2_ip2_0_split_0
I0119 11:17:15.024040 6800 net.cpp:356] ip2_ip2_0_split -> ip2_ip2_0_split_1
I0119 11:17:15.024061 6800 net.cpp:96] Setting up ip2_ip2_0_split
I0119 11:17:15.024071 6800 net.cpp:103] Top shape: 100 10 1 1 (1000)
I0119 11:17:15.024081 6800 net.cpp:103] Top shape: 100 10 1 1 (1000)
I0119 11:17:15.024093 6800 net.cpp:67] Creating Layer accuracy
I0119 11:17:15.024106 6800 net.cpp:394] accuracy <- ip2_ip2_0_split_0
I0119 11:17:15.024118 6800 net.cpp:394] accuracy <- label_mnist_1_split_0
I0119 11:17:15.024132 6800 net.cpp:356] accuracy -> accuracy
I0119 11:17:15.024149 6800 net.cpp:96] Setting up accuracy
I0119 11:17:15.024164 6800 net.cpp:103] Top shape: 1 1 1 1 (1)
I0119 11:17:15.024183 6800 net.cpp:67] Creating Layer loss
I0119 11:17:15.024193 6800 net.cpp:394] loss <- ip2_ip2_0_split_1
I0119 11:17:15.024207 6800 net.cpp:394] loss <- label_mnist_1_split_1
I0119 11:17:15.024219 6800 net.cpp:356] loss -> loss
I0119 11:17:15.024232 6800 net.cpp:96] Setting up loss
I0119 11:17:15.024250 6800 net.cpp:103] Top shape: 1 1 1 1 (1)
I0119 11:17:15.024260 6800 net.cpp:109] with loss weight 1
I0119 11:17:15.024276 6800 net.cpp:170] loss needs backward computation.
I0119 11:17:15.024286 6800 net.cpp:172] accuracy does not need backward computation.
I0119 11:17:15.024299 6800 net.cpp:170] ip2_ip2_0_split needs backward computation.
I0119 11:17:15.024308 6800 net.cpp:170] ip2 needs backward computation.
I0119 11:17:15.024384 6800 net.cpp:170] relu1 needs backward computation.
I0119 11:17:15.024410 6800 net.cpp:170] ip1 needs backward computation.
I0119 11:17:15.024420 6800 net.cpp:170] pool2 needs backward computation.
I0119 11:17:15.024430 6800 net.cpp:170] conv2 needs backward computation.
I0119 11:17:15.024442 6800 net.cpp:170] pool1 needs backward computation.
I0119 11:17:15.024451 6800 net.cpp:170] conv1 needs backward computation.
I0119 11:17:15.024469 6800 net.cpp:172] label_mnist_1_split does not need backward computation.
I0119 11:17:15.024480 6800 net.cpp:172] mnist does not need backward computation.
I0119 11:17:15.024492 6800 net.cpp:208] This network produces output accuracy
I0119 11:17:15.024500 6800 net.cpp:208] This network produces output loss
I0119 11:17:15.024554 6800 net.cpp:467] Collecting Learning Rate and Weight Decay.
I0119 11:17:15.024582 6800 net.cpp:219] Network initialization done.
I0119 11:17:15.024595 6800 net.cpp:220] Memory required for data: 8086808
I0119 11:17:15.024698 6800 solver.cpp:41] Solver scaffolding done.
I0119 11:17:15.024731 6800 solver.cpp:160] Solving LeNet
I0119 11:17:15.024742 6800 solver.cpp:161] Learning Rate Policy: inv
I0119 11:17:15.024811 6800 solver.cpp:264] Iteration 0, Testing net (#0)
I0119 11:17:17.670205 6800 solver.cpp:315] Test net output #0: accuracy = 0.0494
I0119 11:17:17.670256 6800 solver.cpp:315] Test net output #1: loss = 2.30295 (* 1 = 2.30295 loss)
I0119 11:17:17.714017 6800 solver.cpp:209] Iteration 0, loss = 2.30318
I0119 11:17:17.714056 6800 solver.cpp:224] Train net output #0: loss = 2.30318 (* 1 = 2.30318 loss)
I0119 11:17:17.714077 6800 solver.cpp:445] Iteration 0, lr = 0.01
I0119 11:17:18.056740 6800 solver.cpp:334] Snapshotting to examples/mnist/lenet_iter_10.caffemodel
I0119 11:17:18.084429 6800 solver.cpp:342] Snapshotting solver state to examples/mnist/lenet_iter_10.solverstate
I0119 11:17:18.109316 6800 solver.cpp:251] Optimization Done.
I0119 11:17:18.109333 6800 caffe.cpp:121] Optimization Done.