-
Notifications
You must be signed in to change notification settings - Fork 10
/
Copy pathmain.py
273 lines (237 loc) · 8.87 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
from __future__ import (
division,
absolute_import,
with_statement,
print_function,
unicode_literals,
)
import torch
import torch.optim as optim
import torch.optim.lr_scheduler as lr_sched
import torch.nn as nn
from torch.utils.data import DataLoader
from torchvision import transforms
import pointnet2.train.etw_pytorch_utils as pt_utils
import pprint
import os.path as osp
import os
import argparse
import tqdm
# from etw_pytorch_utils import checkpoint_state, save_checkpoint
import numpy as np
from utils import CrossEntropyLoss_with_prob, cross_entropy_with_probs
from pointnet2.models import Pointnet2ClsMSG as Pointnet
from pointnet2.models.pointnet2_msg_cls import Pointnet2MSG_manimix as Pointnet_manimix
from pointnet2.models.pointnet2_msg_cls import model_fn_decorator, model_fn_decorator_mix
from pointnet2.data import ModelNet40Cls
import pointnet2.data.data_utils as d_utils
from pytorchgo.utils import logger
from pytorchgo.utils.pytorch_utils import model_summary, optimizer_summary
from pytorchgo.utils.pytorch_utils import set_gpu
torch.backends.cudnn.enabled = True
torch.backends.cudnn.benchmark = True
def boolean_string(s):
if s not in {'False', 'True'}:
raise ValueError('Not a valid boolean string')
return s == 'True'
def parse_args():
parser = argparse.ArgumentParser(
description="Arguments for cls training",
formatter_class=argparse.ArgumentDefaultsHelpFormatter,
)
parser.add_argument(
"-model", type=str, default='pointnet2', help="pointnet2"
)
parser.add_argument(
"-data", type=str, default='modelnet40', help="modelnet40"
)
parser.add_argument("-batch_size", type=int, default=16, help="Batch size")
parser.add_argument(
"-num_points", type=int, default=1024, help="Number of points to train with"
)
parser.add_argument(
"-weight_decay", type=float, default=-1, help="L2 regularization coeff, -1 use defined value"
)
parser.add_argument("-lr", type=float, default=1e-3, help="Initial learning rate")
parser.add_argument(
"-lr_decay", type=float, default=0.7, help="Learning rate decay gamma"
)
parser.add_argument(
"-decay_step", type=float, default=2.5e5, help="Learning rate decay step"
)
parser.add_argument(
"-bn_momentum", type=float, default=0.5, help="Initial batch norm momentum"
)
parser.add_argument(
"-bnm_decay", type=float, default=0.5, help="Batch norm momentum decay gamma"
)
parser.add_argument(
"-savename", type=str, default='testexp', help="savename"
)
parser.add_argument('-pointmixup', type=boolean_string, default=True, help="if use pointmixup (including point manifold mixup)")
parser.add_argument('-manimixup', type=boolean_string, default=True, help="if use manifold mixup instead of only input mixup in PointMixup")
parser.add_argument(
"-epochs", type=int, default=500, help="Number of epochs to train for"
)
# parser.add_argument(
# "-manilayer", type=int, default=0, help="[0,1,2]"
# )
parser.add_argument('-rot', type=boolean_string, default=True, help="random up-rotation")
parser.add_argument(
"-mixup_alpha", type=float, default=-1, help="mixup parameter that controls beta distribution where the mixrate is drawn from. -1 use defined parameter"
)
parser.add_argument('-evaluate', action='store_true',
help='evaluate')
parser.add_argument(
"-checkpoint", type=str, default=None, help="Checkpoint to start from"
)
parser.add_argument('-align', type=boolean_string, default=False, help="if align the up-rotation of shapes by symmetry axis, recommended for pointmixup (input mixup)")
return parser.parse_args()
lr_clip = 1e-5
bnm_clip = 1e-2
if __name__ == "__main__":
args = parse_args()
if args.weight_decay < 0: # default
if not args.pointmixup:
args.weight_decay = 1e-5
else:
if not args.manimixup:
args.weight_decay = 5e-6
else:
args.weight_decay = 1e-6
if args.pointmixup and args.mixup_alpha < 0:
if args.rot:
if not args.manimixup:
args.mixup_alpha = 0.4
else:
args.mixup_alpha = 1.5
else:
if not args.manimixup:
args.mixup_alpha = 1.0
else:
args.mixup_alpha = 2.0
if (args.pointmixup and args.rot) and (not args.manimixup):
args.align = True
else:
args.align = False
# logger.auto_set_dir('d', "{}_{}".format(args.data, args.model))
logger.auto_set_dir('d', "{}".format(args.savename))
if args.data == 'modelnet40':
num_class = 40
dataset_cls = ModelNet40Cls
else:
raise NotImplementedError
args.epochs = int(args.epochs)
from tensorboardX import SummaryWriter
writer = SummaryWriter(comment=args.savename)
writer.add_text('args', str(args), 0)
transforms_test = d_utils.PointcloudToTensor()
if args.rot:
transforms = transforms.Compose(
[
d_utils.PointcloudToTensor(),
d_utils.PointcloudScale(),
d_utils.PointcloudRotate(),
d_utils.PointcloudTranslate(),
d_utils.PointcloudJitter()
]
)
else:
transforms = transforms.Compose(
[
d_utils.PointcloudToTensor(),
d_utils.PointcloudScale(),
d_utils.PointcloudTranslate(),
d_utils.PointcloudJitter()
]
)
if args.data == 'modelnet40':
num_class = 40
dataset_cls = ModelNet40Cls
test_set = dataset_cls(args.num_points, transforms=transforms_test, train=False)
test_loader = DataLoader(
test_set,
batch_size=args.batch_size,
shuffle=False,
num_workers=10,
pin_memory=True,
)
train_set = dataset_cls(args.num_points, transforms=transforms, keeprate=1.0)
train_loader = DataLoader(
train_set,
batch_size=args.batch_size,
shuffle=True,
num_workers=10,
pin_memory=True,
)
n_strategies = 0
if args.pointmixup: n_strategies += 1
if args.manimixup: n_strategies = n_strategies * 3
if args.model == 'pointnet2':
if args.pointmixup: # input mixup is incorporated with manimix
model = Pointnet_manimix(input_channels=0, num_classes=num_class, use_xyz=True, align=args.align)
else:
model = Pointnet(input_channels=0, num_classes=num_class, use_xyz=True)
model.cuda()
optimizer = optim.Adam(
model.parameters(), lr=args.lr, weight_decay=args.weight_decay
)
lr_lbmd = lambda it: max(
args.lr_decay ** (int(it * args.batch_size / args.decay_step)),
lr_clip / args.lr,
)
bn_lbmd = lambda it: max(
args.bn_momentum
* args.bnm_decay ** (int(it * args.batch_size / args.decay_step)),
bnm_clip,
)
# default value
it = -1 # for the initialize value of `LambdaLR` and `BNMomentumScheduler`
best_loss = 1e10
start_epoch = 1
# load status from checkpoint
if args.checkpoint is not None:
logger.warning("loading checkpoint weight file")
checkpoint_status = pt_utils.load_checkpoint(
model, optimizer, filename=args.checkpoint
)
if checkpoint_status is not None:
it, start_epoch, best_loss = checkpoint_status
lr_scheduler = lr_sched.LambdaLR(optimizer, lr_lambda=lr_lbmd, last_epoch=it)
bnm_scheduler = pt_utils.BNMomentumScheduler(
model, bn_lambda=bn_lbmd, last_epoch=it
)
it = max(it, 0) # for the initialize value of `trainer.train`
if args.pointmixup:
model_fn = model_fn_decorator_mix(cross_entropy_with_probs, nn.CrossEntropyLoss(), num_class=num_class)
else:
model_fn = model_fn_decorator(nn.CrossEntropyLoss())
if not osp.isdir("checkpoints"):
os.makedirs("checkpoints")
model_summary(model)
optimizer_summary(optimizer)
trainer = pt_utils.Trainer_mix(
model,
model_fn,
optimizer,
checkpoint_name="checkpoints/" + args.savename,
best_name="checkpoints/best" + args.savename,
lr_scheduler=lr_scheduler,
bnm_scheduler=bnm_scheduler,
savename=args.savename,
eval_frequency=int(len(train_loader)),
pointmixup=args.pointmixup,
manimixup=args.manimixup,
alpha=args.mixup_alpha
)
if args.evaluate:
logger.warning("evaluating mode")
_ = trainer.eval_epoch(test_loader)
exit(0)
trainer.train(
it, start_epoch, args.epochs, train_loader, test_loader, best_loss=best_loss, writer=writer
)
if start_epoch == args.epochs:
_ = trainer.eval_epoch(test_loader)
# writer.export_scalars_to_json("all_scalars.json")
writer.close()