<img src="https://github.com/dusty-nv/jetson-inference/raw/master/docs/images/deep-vision-header.jpg" width="100%"> <p align="right"><sup><a href="imagenet-snapshot.md">Back</a> | <a href="detectnet-training.md">Next</a> | </sup><a href="../README.md#two-days-to-a-demo-digits"><sup>Contents</sup></a> <br/> <sup>Image Recognition</sup></p> # Loading Custom Models on Jetson The [`imagenet-console`](../examples/imagenet-console/imagenet-console.cpp) and [`imagenet-camera`](../examples/imagenet-camera/imagenet-camera.cpp) programs that we used before also accept extended command line parameters for loading a custom model snapshot. Set the `$NET` variable below to the path to your extracted snapshot: ``` bash $ NET=networks/GoogleNet-ILSVRC12-subset $ ./imagenet-console bird_0.jpg output_0.jpg \ --prototxt=$NET/deploy.prototxt \ --model=$NET/snapshot_iter_184080.caffemodel \ --labels=$NET/labels.txt \ --input_blob=data \ --output_blob=softmax ``` As before, the classification and confidence will be overlayed to the output image. When compared to the output of the original network, the retrained GoogleNet-12 makes similar classifications to the original GoogleNet-1000, except that now it outputs the meta-classes that we've retrained it with:  The extended command line parameters above also load custom classification models with [`imagenet-camera`](../examples/imagenet-camera/imagenet-camera.cpp). ## <p align="right">Next | <b><a href="detectnet-training.md">Locating Object Coordinates using DetectNet</a></b> <br/> Back | <b><a href="imagenet-snapshot.md">Downloading Model Snapshots to Jetson</a></p> </b><p align="center"><sup>© 2016-2019 NVIDIA | </sup><a href="../README.md#two-days-to-a-demo-digits"><sup>Table of Contents</sup></a></p>