-
Notifications
You must be signed in to change notification settings - Fork 10
/
Copy pathmodel.py
101 lines (84 loc) · 5.43 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
"""
Implementation of a Pointer Network using AttentionWrapper.
"""
import numpy as np
import tensorflow as tf
# can be edited (to anything larger than vocab size) if encoding of vocab already uses 0, 1
END_TOKEN = 0
START_TOKEN = 1
class PointerNet(object):
def __init__(self, n_pointers=1, batch_size=100, seq_length=45, learning_rate=0.001,
cell=tf.contrib.rnn.GRUCell, n_layers=3, n_units=50):
"""Creates TensorFlow graph of a pointer network.
Args:
n_pointers (int): Number of pointers to generate.
batch_size (int) : Batch size for training/inference.
seq_length (int): Maximum sequence length of inputs to encoder.
learning_rate (float): Learning rate for Adam optimizer.
cell (method): Method to create single RNN cell.
n_layers (int): Number of layers in RNN (assumed to be the same for encoder & decoder).
n_units (int): Number of units in RNN cell (assumed to be the same for all cells).
"""
with tf.variable_scope('inputs'):
# integer-encoded input passages (e.g. 'She went home' -> [2, 3, 4])
self.encoder_inputs = tf.placeholder(tf.int32, [batch_size, seq_length])
# actual non-padded length of each input passages; used for dynamic unrolling
# (e.g. ['She went home', 'She went to the station'] -> [3, 5])
self.input_lengths = tf.placeholder(tf.int32, [batch_size])
with tf.variable_scope('outputs'):
# pointer(s) to answer: (e.g. 'She went home' -> [2])
self.pointer_labels = tf.placeholder(tf.int32, [batch_size, n_pointers])
start_tokens = tf.constant(START_TOKEN, shape=[batch_size], dtype=tf.int32)
# outputs of decoder are the word 'pointed' to by each pointer
self.decoder_labels = tf.stack([tf.gather(inp, ptr) for inp, ptr in
list(zip(tf.unstack(self.encoder_inputs), tf.unstack(self.pointer_labels)))])
# inputs to decoder are inputs shifted over by one, with a <start> token at the front
self.decoder_inputs = tf.concat([tf.expand_dims(start_tokens, 1), self.decoder_labels], 1)
# output lengths are equal to the number of pointers
self.output_lengths = tf.constant(n_pointers, shape=[batch_size])
with tf.variable_scope('embeddings'):
# load pre-trained GloVe embeddings
word_matrix = tf.constant(np.load('./data/word_matrix.npy'), dtype=tf.float32)
self.word_matrix = tf.Variable(word_matrix, trainable=True, name='word_matrix')
# lookup embeddings of inputs & decoder inputs
self.input_embeds = tf.nn.embedding_lookup(self.word_matrix, self.encoder_inputs)
self.output_embeds = tf.nn.embedding_lookup(self.word_matrix, self.decoder_inputs)
with tf.variable_scope('encoder'):
if n_layers > 1:
enc_cell = tf.contrib.rnn.MultiRNNCell([cell(n_units) for _ in range(n_layers)])
else:
enc_cell = cell(n_units)
self.encoder_outputs, _ = tf.nn.dynamic_rnn(enc_cell, self.input_embeds, self.input_lengths, dtype=tf.float32)
with tf.variable_scope('attention'):
attention = tf.contrib.seq2seq.BahdanauAttention(n_units, self.encoder_outputs,
memory_sequence_length=self.input_lengths)
with tf.variable_scope('decoder'):
helper = tf.contrib.seq2seq.GreedyEmbeddingHelper(self.word_matrix, start_tokens, END_TOKEN)
if n_layers > 1:
dec_cell = tf.contrib.rnn.MultiRNNCell([cell(n_units) for _ in range(n_layers)])
else:
dec_cell = cell(n_units)
attn_cell = tf.contrib.seq2seq.AttentionWrapper(dec_cell, attention, alignment_history=True)
out_cell = tf.contrib.rnn.OutputProjectionWrapper(attn_cell, word_matrix.shape[0] - 2)
decoder = tf.contrib.seq2seq.BasicDecoder(out_cell, helper, out_cell.zero_state(batch_size, tf.float32))
self.decoder_outputs, dec_state, _ = tf.contrib.seq2seq.dynamic_decode(decoder, maximum_iterations=n_pointers)
with tf.variable_scope('pointers'):
# tensor of shape (# pointers, batch size, max. input sequence length)
self.pointer_prob = tf.reshape(dec_state.alignment_history.stack(), [n_pointers, batch_size, seq_length])
self.pointers = tf.unstack(tf.argmax(self.pointer_prob, axis=2, output_type=tf.int32))
with tf.variable_scope('loss'):
loss = tf.zeros(())
pointers = tf.unstack(self.pointer_prob)
labels = tf.unstack(self.pointer_labels, axis=1)
equal = []
for i in range(n_pointers):
loss += tf.nn.sparse_softmax_cross_entropy_with_logits(labels=labels[i], logits=pointers[i])
equal.append(tf.equal(self.pointers[i], labels[i]))
self.loss = tf.reduce_mean(loss)
self.correct = tf.cast(tf.stack(equal), tf.float32)
self.all_correct = tf.cast(tf.equal(tf.reduce_sum(self.correct, axis=0), n_pointers), tf.float32)
self.exact_match = tf.reduce_mean(self.all_correct)
with tf.variable_scope('training'):
self.train_step = tf.train.AdamOptimizer(learning_rate).minimize(self.loss)
if __name__ == '__main__':
m = PointerNet()