forked from carpedm20/DCGAN-tensorflow
-
Notifications
You must be signed in to change notification settings - Fork 0
/
utils.py
216 lines (180 loc) · 7.74 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
"""
Some codes from https://github.com/Newmu/dcgan_code
"""
from __future__ import division
import math
import json
import random
import pprint
import scipy.misc
import numpy as np
from time import gmtime, strftime
pp = pprint.PrettyPrinter()
get_stddev = lambda x, k_h, k_w: 1/math.sqrt(k_w*k_h*x.get_shape()[-1])
def get_image(image_path, image_size, is_crop=True, resize_w=64, is_grayscale = False):
return transform(imread(image_path, is_grayscale), image_size, is_crop, resize_w)
def save_images(images, size, image_path):
return imsave(inverse_transform(images), size, image_path)
def imread(path, is_grayscale = False):
if (is_grayscale):
return scipy.misc.imread(path, flatten = True).astype(np.float)
else:
return scipy.misc.imread(path).astype(np.float)
def merge_images(images, size):
return inverse_transform(images)
def merge(images, size):
h, w = images.shape[1], images.shape[2]
img = np.zeros((h * size[0], w * size[1], 3))
for idx, image in enumerate(images):
i = idx % size[1]
j = idx // size[1]
img[j*h:j*h+h, i*w:i*w+w, :] = image
return img
def imsave(images, size, path):
return scipy.misc.imsave(path, merge(images, size))
def center_crop(x, crop_h, crop_w=None, resize_w=64):
if crop_w is None:
crop_w = crop_h
h, w = x.shape[:2]
j = int(round((h - crop_h)/2.))
i = int(round((w - crop_w)/2.))
return scipy.misc.imresize(x[j:j+crop_h, i:i+crop_w],
[resize_w, resize_w])
def transform(image, npx=64, is_crop=True, resize_w=64):
# npx : # of pixels width/height of image
if is_crop:
cropped_image = center_crop(image, npx, resize_w=resize_w)
else:
cropped_image = image
return np.array(cropped_image)/127.5 - 1.
def inverse_transform(images):
return (images+1.)/2.
def to_json(output_path, *layers):
with open(output_path, "w") as layer_f:
lines = ""
for w, b, bn in layers:
layer_idx = w.name.split('/')[0].split('h')[1]
B = b.eval()
if "lin/" in w.name:
W = w.eval()
depth = W.shape[1]
else:
W = np.rollaxis(w.eval(), 2, 0)
depth = W.shape[0]
biases = {"sy": 1, "sx": 1, "depth": depth, "w": ['%.2f' % elem for elem in list(B)]}
if bn != None:
gamma = bn.gamma.eval()
beta = bn.beta.eval()
gamma = {"sy": 1, "sx": 1, "depth": depth, "w": ['%.2f' % elem for elem in list(gamma)]}
beta = {"sy": 1, "sx": 1, "depth": depth, "w": ['%.2f' % elem for elem in list(beta)]}
else:
gamma = {"sy": 1, "sx": 1, "depth": 0, "w": []}
beta = {"sy": 1, "sx": 1, "depth": 0, "w": []}
if "lin/" in w.name:
fs = []
for w in W.T:
fs.append({"sy": 1, "sx": 1, "depth": W.shape[0], "w": ['%.2f' % elem for elem in list(w)]})
lines += """
var layer_%s = {
"layer_type": "fc",
"sy": 1, "sx": 1,
"out_sx": 1, "out_sy": 1,
"stride": 1, "pad": 0,
"out_depth": %s, "in_depth": %s,
"biases": %s,
"gamma": %s,
"beta": %s,
"filters": %s
};""" % (layer_idx.split('_')[0], W.shape[1], W.shape[0], biases, gamma, beta, fs)
else:
fs = []
for w_ in W:
fs.append({"sy": 5, "sx": 5, "depth": W.shape[3], "w": ['%.2f' % elem for elem in list(w_.flatten())]})
lines += """
var layer_%s = {
"layer_type": "deconv",
"sy": 5, "sx": 5,
"out_sx": %s, "out_sy": %s,
"stride": 2, "pad": 1,
"out_depth": %s, "in_depth": %s,
"biases": %s,
"gamma": %s,
"beta": %s,
"filters": %s
};""" % (layer_idx, 2**(int(layer_idx)+2), 2**(int(layer_idx)+2),
W.shape[0], W.shape[3], biases, gamma, beta, fs)
layer_f.write(" ".join(lines.replace("'","").split()))
def make_gif(images, fname, duration=2, true_image=False):
import moviepy.editor as mpy
def make_frame(t):
try:
x = images[int(len(images)/duration*t)]
except:
x = images[-1]
if true_image:
return x.astype(np.uint8)
else:
return ((x+1)/2*255).astype(np.uint8)
clip = mpy.VideoClip(make_frame, duration=duration)
clip.write_gif(fname, fps = len(images) / duration)
def visualize(sess, dcgan, config, option):
if option == 0:
z_sample = np.random.uniform(-0.5, 0.5, size=(config.batch_size, dcgan.z_dim))
samples = sess.run(dcgan.sampler, feed_dict={dcgan.z: z_sample})
save_images(samples, [8, 8], './samples/test_%s.png' % strftime("%Y-%m-%d %H:%M:%S", gmtime()))
elif option == 1:
values = np.arange(0, 1, 1./config.batch_size)
for idx in xrange(100):
print(" [*] %d" % idx)
z_sample = np.zeros([config.batch_size, dcgan.z_dim])
for kdx, z in enumerate(z_sample):
z[idx] = values[kdx]
if config.dataset == "mnist":
y = np.random.choice(10, config.batch_size)
y_one_hot = np.zeros((config.batch_size, 10))
y_one_hot[np.arange(config.batch_size), y] = 1
samples = sess.run(dcgan.sampler, feed_dict={dcgan.z: z_sample, dcgan.y: y_one_hot})
else:
samples = sess.run(dcgan.sampler, feed_dict={dcgan.z: z_sample})
save_images(samples, [8, 8], './samples/test_arange_%s.png' % (idx))
elif option == 2:
values = np.arange(0, 1, 1./config.batch_size)
for idx in [random.randint(0, 99) for _ in xrange(100)]:
print(" [*] %d" % idx)
z = np.random.uniform(-0.2, 0.2, size=(dcgan.z_dim))
z_sample = np.tile(z, (config.batch_size, 1))
#z_sample = np.zeros([config.batch_size, dcgan.z_dim])
for kdx, z in enumerate(z_sample):
z[idx] = values[kdx]
if config.dataset == "mnist":
y = np.random.choice(10, config.batch_size)
y_one_hot = np.zeros((config.batch_size, 10))
y_one_hot[np.arange(config.batch_size), y] = 1
samples = sess.run(dcgan.sampler, feed_dict={dcgan.z: z_sample, dcgan.y: y_one_hot})
else:
samples = sess.run(dcgan.sampler, feed_dict={dcgan.z: z_sample})
try:
make_gif(samples, './samples/test_gif_%s.gif' % (idx))
except:
save_images(samples, [8, 8], './samples/test_%s.png' % strftime("%Y-%m-%d %H:%M:%S", gmtime()))
elif option == 3:
values = np.arange(0, 1, 1./config.batch_size)
for idx in xrange(100):
print(" [*] %d" % idx)
z_sample = np.zeros([config.batch_size, dcgan.z_dim])
for kdx, z in enumerate(z_sample):
z[idx] = values[kdx]
samples = sess.run(dcgan.sampler, feed_dict={dcgan.z: z_sample})
make_gif(samples, './samples/test_gif_%s.gif' % (idx))
elif option == 4:
image_set = []
values = np.arange(0, 1, 1./config.batch_size)
for idx in xrange(100):
print(" [*] %d" % idx)
z_sample = np.zeros([config.batch_size, dcgan.z_dim])
for kdx, z in enumerate(z_sample): z[idx] = values[kdx]
image_set.append(sess.run(dcgan.sampler, feed_dict={dcgan.z: z_sample}))
make_gif(image_set[-1], './samples/test_gif_%s.gif' % (idx))
new_image_set = [merge(np.array([images[idx] for images in image_set]), [10, 10]) \
for idx in range(64) + range(63, -1, -1)]
make_gif(new_image_set, './samples/test_gif_merged.gif', duration=8)