-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtourism_test.py
118 lines (92 loc) · 4.61 KB
/
tourism_test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
import argparse
import json
import torch
import torch.nn.functional as F
from torch.utils.data import DataLoader
from datasets.phototourism import build_tourism
from models.nerf import build_nerf
from models.rendering import get_rays_tourism, sample_points, volume_render
from utils.tour_video import create_interpolation_video
def inner_loop(model, optim, img, rays_o, rays_d, bound, num_samples, raybatch_size, inner_steps):
"""
train the inner model for a specified number of iterations
"""
pixels = img.reshape(-1, 3)
rays_o, rays_d = rays_o.reshape(-1, 3), rays_d.reshape(-1, 3)
num_rays = rays_d.shape[0]
for step in range(inner_steps):
indices = torch.randint(num_rays, size=[raybatch_size])
raybatch_o, raybatch_d = rays_o[indices], rays_d[indices]
pixelbatch = pixels[indices]
t_vals, xyz = sample_points(raybatch_o, raybatch_d, bound[0], bound[1],
num_samples, perturb=True)
optim.zero_grad()
rgbs, sigmas = model(xyz)
colors = volume_render(rgbs, sigmas, t_vals)
loss = F.mse_loss(colors, pixelbatch)
loss.backward()
optim.step()
def report_result(model, img, rays_o, rays_d, bound, num_samples, raybatch_size):
"""
report synthesis result on heldout view
"""
pixels = img.reshape(-1, 3)
rays_o, rays_d = rays_o.reshape(-1, 3), rays_d.reshape(-1, 3)
t_vals, xyz = sample_points(rays_o, rays_d, bound[0], bound[1],
num_samples, perturb=False)
synth = []
num_rays = rays_d.shape[0]
with torch.no_grad():
for i in range(0, num_rays, raybatch_size):
rgbs_batch, sigmas_batch = model(xyz[i:i+raybatch_size])
color_batch = volume_render(rgbs_batch, sigmas_batch, t_vals[i:i+raybatch_size])
synth.append(color_batch)
synth = torch.cat(synth, dim=0)
error = F.mse_loss(synth, pixels)
psnr = -10*torch.log10(error)
return psnr
def test():
parser = argparse.ArgumentParser(description='phototourism with meta-learning')
parser.add_argument('--config', type=str, required=True,
help='config file for the scene')
parser.add_argument('--weight-path', type=str, required=True,
help='path to the meta-trained weight file')
args = parser.parse_args()
with open(args.config) as config:
info = json.load(config)
for key, value in info.items():
args.__dict__[key] = value
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
test_set = build_tourism(image_set="test", args=args)
test_loader = DataLoader(test_set, batch_size=1, shuffle=False)
model = build_nerf(args)
model.to(device)
checkpoint = torch.load(args.weight_path, map_location=device)
meta_state_dict = checkpoint['meta_model_state_dict']
test_psnrs = []
for idx, (img, pose, kinv, bound) in enumerate(test_loader):
img, pose, kinv, bound = img.to(device), pose.to(device), kinv.to(device), bound.to(device)
img, pose, kinv, bound = img.squeeze(), pose.squeeze(), kinv.squeeze(), bound.squeeze()
rays_o, rays_d = get_rays_tourism(img.shape[0], img.shape[1], kinv, pose)
# optimize on the left half, test on the right half
left_width = img.shape[1]//2
right_width = img.shape[1] - left_width
tto_img, test_img = torch.split(img, [left_width, right_width], dim=1)
tto_rays_o, test_rays_o = torch.split(rays_o, [left_width, right_width], dim=1)
tto_rays_d, test_rays_d = torch.split(rays_d, [left_width, right_width], dim=1)
model.load_state_dict(meta_state_dict)
optim = torch.optim.SGD(model.parameters(), args.tto_lr)
inner_loop(model, optim, tto_img, tto_rays_o, tto_rays_d,
bound, args.num_samples, args.tto_batchsize, args.tto_steps)
psnr = report_result(model, test_img, test_rays_o, test_rays_d, bound,
args.num_samples, args.test_batchsize)
print(f"test view {idx+1}, psnr:{psnr:.3f}")
test_psnrs.append(psnr)
test_psnrs = torch.stack(test_psnrs)
print("----------------------------------")
print(f"test dataset mean psnr: {test_psnrs.mean():.3f}")
print("\ncreating interpolation video ...\n")
create_interpolation_video(args, model, meta_state_dict, test_set, device)
print("\ninterpolation video created!")
if __name__ == '__main__':
test()