-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathcli.py
46 lines (40 loc) · 1.12 KB
/
cli.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
import sys
from pathlib import Path
ROOT = Path(__file__).resolve().parent
sys.path.insert(0, str(ROOT))
import argparse
parser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser.add_argument(
"-i",
"--input",
required=True,
help="path to input FASTA file",
)
parser.add_argument(
"-o",
"--output",
required=True,
help="path to output csv file",
)
parser.add_argument(
"--model",
default=Path(ROOT / "results" / "model.pt"),
help="path to model",
)
args = parser.parse_args()
import pandas as pd
import torch
from torch.utils.data import DataLoader
from data import Vocab
from model import *
from utils import Peptides, fasta2df, predict, dict2df
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model = torch.load(args.model, map_location=device)
df_in = fasta2df(args.input)
vocab = Vocab(max_len=25)
dataset = Peptides(df_in, vocab)
dataloader = DataLoader(dataset, batch_size=32, collate_fn=dataset.collate_fn)
lst = predict(dataloader, model)
df_out = dict2df(lst)
df = pd.concat([df_in, df_out], axis=1)
df.to_csv(args.output)