-
Notifications
You must be signed in to change notification settings - Fork 45
/
train_wrn.py
142 lines (119 loc) · 5.35 KB
/
train_wrn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
import numpy as np
import pandas as pd
import sys
import json
import os
import sklearn.metrics as metrics
import wide_residual_network as wrn
import keras.callbacks as callbacks
import keras.utils.np_utils as kutils
from keras.datasets import cifar10
from keras.preprocessing.image import ImageDataGenerator
from keras import backend as K
from keras.optimizers import SGD
from keras.callbacks import LearningRateScheduler
from watermark_regularizers import WatermarkRegularizer
from watermark_regularizers import get_wmark_regularizers
from watermark_regularizers import show_encoded_wmark
RESULT_PATH = './result'
MODEL_CHKPOINT_FNAME = os.path.join(RESULT_PATH, 'WRN-Weights.h5')
def update_hdf5(fname, path, data):
store = pd.HDFStore(fname)
if path in store.keys():
store.remove(path)
store.append(path, data)
store.close()
def save_wmark_signatures(prefix, model):
for layer_id, wmark_regularizer in get_wmark_regularizers(model):
fname_w = prefix + '_layer{}_w.npy'.format(layer_id)
fname_b = prefix + '_layer{}_b.npy'.format(layer_id)
np.save(fname_w, wmark_regularizer.get_matrix())
np.save(fname_b, wmark_regularizer.get_signature())
lr_schedule = [60, 120, 160] # epoch_step
def schedule(epoch_idx):
if (epoch_idx + 1) < lr_schedule[0]:
return 0.1
elif (epoch_idx + 1) < lr_schedule[1]:
return 0.02 # lr_decay_ratio = 0.2
elif (epoch_idx + 1) < lr_schedule[2]:
return 0.004
return 0.0008
if __name__ == '__main__':
settings_json_fname = sys.argv[1]
train_settings = json.load(open(settings_json_fname))
if not os.path.isdir(RESULT_PATH):
os.makedirs(RESULT_PATH)
# load dataset and fitting data for learning
if train_settings['dataset'] == 'cifar10':
dataset = cifar10
nb_classes = 10
else:
print('not supported dataset "{}"'.format(train_settings['dataset']))
exit(1)
(trainX, trainY), (testX, testY) = dataset.load_data()
trainX = trainX.astype('float32')
trainX /= 255.0
testX = testX.astype('float32')
testX /= 255.0
trainY = kutils.to_categorical(trainY)
testY = kutils.to_categorical(testY)
generator = ImageDataGenerator(rotation_range=10,
width_shift_range=5./32,
height_shift_range=5./32,
horizontal_flip=True)
generator.fit(trainX, seed=0, augment=True)
if 'replace_train_y' in train_settings and len(train_settings['replace_train_y']) > 0:
print('trainY was replaced from "{}"'.format(train_settings['replace_train_y']))
trainY = np.load(train_settings['replace_train_y'])
# read parameters
batch_size = train_settings['batch_size']
nb_epoch = train_settings['epoch']
scale = train_settings['scale']
embed_dim = train_settings['embed_dim']
N = train_settings['N']
k = train_settings['k']
target_blk_id = train_settings['target_blk_id']
base_modelw_fname = train_settings['base_modelw_fname']
wtype = train_settings['wmark_wtype']
randseed = train_settings['randseed'] if 'randseed' in train_settings else 'none'
ohist_fname = train_settings['history']
hist_hdf_path = 'WTYPE_{}/DIM{}/SCALE{}/N{}K{}B{}EPOCH{}/TBLK{}'.format(
wtype, embed_dim, scale, N, k, batch_size, nb_epoch, target_blk_id)
modelname_prefix = os.path.join(RESULT_PATH, 'wrn_' + hist_hdf_path.replace('/', '_'))
# initialize process for Watermark
b = np.ones((1, embed_dim))
wmark_regularizer = WatermarkRegularizer(scale, b, wtype=wtype, randseed=randseed)
init_shape = (3, 32, 32) if K.image_dim_ordering() == 'th' else (32, 32, 3)
model = wrn.create_wide_residual_network(init_shape, nb_classes=nb_classes, N=N, k=k, dropout=0.00,
wmark_regularizer=wmark_regularizer, target_blk_num=target_blk_id)
model.summary()
print('Watermark matrix:\n{}'.format(wmark_regularizer.get_matrix()))
# training process
sgd = SGD(lr=0.1, momentum=0.9, nesterov=True)
model.compile(loss="categorical_crossentropy", optimizer=sgd, metrics=["acc"])
if len(base_modelw_fname) > 0:
model.load_weights(base_modelw_fname)
print("Finished compiling")
hist = \
model.fit_generator(generator.flow(trainX, trainY, batch_size=batch_size), samples_per_epoch=len(trainX), nb_epoch=nb_epoch,
callbacks=[callbacks.ModelCheckpoint(MODEL_CHKPOINT_FNAME, monitor="val_acc", save_best_only=True),
LearningRateScheduler(schedule=schedule)
],
validation_data=(testX, testY),
nb_val_samples=testX.shape[0],)
show_encoded_wmark(model)
# validate training accuracy
yPreds = model.predict(testX)
yPred = np.argmax(yPreds, axis=1)
yPred = kutils.to_categorical(yPred)
yTrue = testY
accuracy = metrics.accuracy_score(yTrue, yPred) * 100
error = 100 - accuracy
print("Accuracy : ", accuracy)
print("Error : ", error)
# write history and model parameters to file
update_hdf5(ohist_fname, hist_hdf_path, pd.DataFrame(hist.history))
model.save_weights(modelname_prefix + '.weight')
# write watermark matrix and embedded signature to file
if target_blk_id > 0:
save_wmark_signatures(modelname_prefix, model)