-
Notifications
You must be signed in to change notification settings - Fork 10
/
Copy pathmain_adv_deit.py
executable file
·859 lines (739 loc) · 38.7 KB
/
main_adv_deit.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
# Copyright (c) 2015-present, Facebook, Inc.
# All rights reserved.
import argparse
import datetime
import numpy as np
import time
import torch
import torch.backends.cudnn as cudnn
import json
from functools import partial
from pathlib import Path
from timm.data import Mixup
from timm.models import create_model
from timm.loss import LabelSmoothingCrossEntropy, SoftTargetCrossEntropy
from timm.scheduler import create_scheduler
from timm.optim import create_optimizer
from timm.utils import NativeScaler, get_state_dict, ModelEma
from datasets import build_dataset
from engine import train_one_epoch, evaluate
from models.losses import DistillationLoss
from samplers import RASampler
# import models
import utils
import scaler
# Add from AdvProp
from PIL import ImageFile
ImageFile.LOAD_TRUNCATED_IMAGES = True
import math
import os
import shutil
from tensorboardX import SummaryWriter
from models.ghost_bn import GhostBN2D_ADV
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.nn.parallel
import torch.backends.cudnn as cudnn
import torch.optim as optim
import torch.utils.data as data
import torchvision.transforms as transforms
import torchvision.datasets as datasets
from torch.optim.lr_scheduler import _LRScheduler
from models.attacker import NoOpAttacker, PGDAttacker
from models.advresnet_gbn import Affine
def get_args_parser():
parser = argparse.ArgumentParser('AdvTrans training and evaluation script', add_help=False)
parser.add_argument('--batch-size', default=64, type=int)
parser.add_argument('--epochs', default=300, type=int)
parser.add_argument('--activation', default='relu', type = str)
parser.add_argument('--forward-time', default = 8, type = int)
# normalized mean and std control.
parser.add_argument('--normalize', default='adv', type = str, choices=['adv', 'clean'])
parser.add_argument('--nb_classes', default=1000, type=int, help='number of classes')
parser.add_argument('--sing', default='none', type = str, choices=['none', 'singbn', 'singbn', 'singgbn','singln'])
parser.add_argument('--adjust_lr', default = 512, type = int)
# attacker options
parser.add_argument('--attack-iter', help='Adversarial attack iteration', type=int, default=0)
parser.add_argument('--attack-epsilon', help='Adversarial attack maximal perturbation', type=float, default=1.0)
parser.add_argument('--attack-step-size', help='Adversarial attack step size', type=float, default=1.0)
# Model parameters
parser.add_argument('--model', default='deit_base_patch16_224', type=str, metavar='MODEL',
help='Name of model to train')
parser.add_argument('--input-size', default=224, type=int, help='images input size')
parser.add_argument('--drop', type=float, default=0.0, metavar='PCT',
help='Dropout rate (default: 0.)')
parser.add_argument('--drop-path', type=float, default=0.1, metavar='PCT',
help='Drop path rate (default: 0.1)')
parser.add_argument('--model-ema', action='store_true')
parser.add_argument('--no-model-ema', action='store_false', dest='model_ema')
parser.set_defaults(model_ema=True)
parser.add_argument('--model-ema-decay', type=float, default=0.99996, help='')
parser.add_argument('--model-ema-force-cpu', action='store_true', default=False, help='')
# Optimizer parameters
parser.add_argument('--opt', default='adamw', type=str, metavar='OPTIMIZER',
help='Optimizer (default: "adamw"')
parser.add_argument('--opt-eps', default=1e-8, type=float, metavar='EPSILON',
help='Optimizer Epsilon (default: 1e-8)')
parser.add_argument('--opt-betas', default=None, type=float, nargs='+', metavar='BETA',
help='Optimizer Betas (default: None, use opt default)')
parser.add_argument('--clip-grad', type=float, default=None, metavar='NORM',
help='Clip gradient norm (default: None, no clipping)')
parser.add_argument('--momentum', type=float, default=0.9, metavar='M',
help='SGD momentum (default: 0.9)')
parser.add_argument('--weight-decay', type=float, default=0.05,
help='weight decay (default: 0.05)') #
# Learning rate schedule parameters
parser.add_argument('--sched', default='cosine', type=str, metavar='SCHEDULER',
help='LR scheduler (default: "cosine"')
parser.add_argument('--lr', type=float, default=5e-4, metavar='LR',
help='learning rate (default: 5e-4)')
parser.add_argument('--lr-noise', type=float, nargs='+', default=None, metavar='pct, pct',
help='learning rate noise on/off epoch percentages')
parser.add_argument('--lr-noise-pct', type=float, default=0.67, metavar='PERCENT',
help='learning rate noise limit percent (default: 0.67)')
parser.add_argument('--lr-noise-std', type=float, default=1.0, metavar='STDDEV',
help='learning rate noise std-dev (default: 1.0)')
parser.add_argument('--warmup-lr', type=float, default=1e-6, metavar='LR',
help='warmup learning rate (default: 1e-6)')
parser.add_argument('--min-lr', type=float, default=1e-5, metavar='LR',
help='lower lr bound for cyclic schedulers that hit 0 (1e-5)')
parser.add_argument('--decay-epochs', type=float, default=30, metavar='N',
help='epoch interval to decay LR')
parser.add_argument('--warmup-epochs', type=int, default=5, metavar='N',
help='epochs to warmup LR, if scheduler supports')
parser.add_argument('--cooldown-epochs', type=int, default=10, metavar='N',
help='epochs to cooldown LR at min_lr, after cyclic schedule ends')
parser.add_argument('--patience-epochs', type=int, default=10, metavar='N',
help='patience epochs for Plateau LR scheduler (default: 10')
parser.add_argument('--decay-rate', '--dr', type=float, default=0.1, metavar='RATE',
help='LR decay rate (default: 0.1)')
# Augmentation parameters
parser.add_argument('--color-jitter', type=float, default=None, metavar='PCT',
help='Color jitter factor (default: 0.4)')
parser.add_argument('--aa', type=str, default=None, metavar='NAME',
help='Use AutoAugment policy. "v0" or "original". " + \
"(default: rand-m9-mstd0.5-inc1)'),
parser.add_argument('--smoothing', type=float, default=0.1, help='Label smoothing (default: 0.1)')
parser.add_argument('--train-interpolation', type=str, default='bicubic',
help='Training interpolation (random, bilinear, bicubic default: "bicubic")')
parser.add_argument('--repeated-aug', action='store_true')
parser.add_argument('--no-repeated-aug', action='store_false', dest='repeated_aug')
parser.set_defaults(repeated_aug=True)
parser.add_argument('--accumulative', action='store_true')
parser.add_argument('--no-accumulative', action='store_false', dest='accumulative')
parser.set_defaults(accumulative=False)
# * Random Erase params
parser.add_argument('--reprob', type=float, default=0.25, metavar='PCT',
help='Random erase prob (default: 0.25)')
parser.add_argument('--remode', type=str, default='pixel',
help='Random erase mode (default: "pixel")')
parser.add_argument('--recount', type=int, default=1,
help='Random erase count (default: 1)')
parser.add_argument('--resplit', action='store_true', default=False,
help='Do not random erase first (clean) augmentation split')
# * Mixup params
parser.add_argument('--mixup', type=float, default=0.8,
help='mixup alpha, mixup enabled if > 0. (default: 0.8)')
parser.add_argument('--cutmix', type=float, default=1.0,
help='cutmix alpha, cutmix enabled if > 0. (default: 1.0)')
parser.add_argument('--cutmix-minmax', type=float, nargs='+', default=None,
help='cutmix min/max ratio, overrides alpha and enables cutmix if set (default: None)')
parser.add_argument('--mixup-prob', type=float, default=1.0,
help='Probability of performing mixup or cutmix when either/both is enabled')
parser.add_argument('--mixup-switch-prob', type=float, default=0.5,
help='Probability of switching to cutmix when both mixup and cutmix enabled')
parser.add_argument('--mixup-mode', type=str, default='batch',
help='How to apply mixup/cutmix params. Per "batch", "pair", or "elem"')
# Distillation parameters
parser.add_argument('--teacher-model', default='regnety_160', type=str, metavar='MODEL',
help='Name of teacher model to train (default: "regnety_160"')
parser.add_argument('--teacher-path', type=str, default='')
parser.add_argument('--distillation-type', default='none', choices=['none', 'soft', 'hard'], type=str, help="")
parser.add_argument('--distillation-alpha', default=0.5, type=float, help="")
parser.add_argument('--distillation-tau', default=1.0, type=float, help="")
parser.add_argument('--prob_start_from_clean', default=0, type=float, help="")
# * Finetuning params
parser.add_argument('--finetune', default='', help='finetune from checkpoint')
# Dataset parameters
parser.add_argument('--data-path', default='/datasets01/imagenet_full_size/061417/', type=str,
help='dataset path')
parser.add_argument('--data-set', default='IMNET', choices=['CIFAR', 'IMNET', 'INAT', 'INAT19'],
type=str, help='Image Net dataset path')
parser.add_argument('--inat-category', default='name',
choices=['kingdom', 'phylum', 'class', 'order', 'supercategory', 'family', 'genus', 'name'],
type=str, help='semantic granularity')
parser.add_argument('--output_dir', default='',
help='path where to save, empty for no saving')
parser.add_argument('--device', default='cuda',
help='device to use for training / testing')
parser.add_argument('--seed', default=0, type=int)
parser.add_argument('--resume', default='', help='resume from checkpoint')
parser.add_argument('--start_epoch', default=0, type=int, metavar='N',
help='start epoch')
parser.add_argument('--eval', action='store_true', help='Perform evaluation only')
parser.add_argument('--dist-eval', action='store_true', default=False, help='Enabling distributed evaluation')
parser.add_argument('--num_workers', default=10, type=int)
parser.add_argument('--pin-mem', action='store_true',
help='Pin CPU memory in DataLoader for more efficient (sometimes) transfer to GPU.')
parser.add_argument('--no-pin-mem', action='store_false', dest='pin_mem',
help='')
parser.set_defaults(pin_mem=True)
# distributed training parameters
parser.add_argument('--world_size', default=1, type=int,
help='number of distributed processes')
parser.add_argument('--dist_url', default='env://', help='url used to set up distributed training')
return parser
def main(args):
if args.model.startswith('resnet'):
if args.sing == 'singbn':
import advresnet as advres
elif args.sing == 'singgbn':
if args.activation == 'relu':
import advresnet_gbn as advres
elif args.activation == 'gelu':
import advresnet_gbn_gelu as advres
else:
import models.models
if args.attack_iter == 0:
train_attacker = NoOpAttacker()
else:
train_attacker = PGDAttacker(args.attack_iter, args.attack_epsilon, args.attack_step_size, prob_start_from_clean=args.prob_start_from_clean)
eval_attacker_0 = NoOpAttacker()
eval_attacker_5 = PGDAttacker(5, 4, 1, prob_start_from_clean=0.0)
eval_attacker_10 = PGDAttacker(10, 4, 1, prob_start_from_clean=0.0)
eval_attacker_50 = PGDAttacker(50, 4, 1, prob_start_from_clean=0.0)
eval_attacker_100 = PGDAttacker(100, 4, 1, prob_start_from_clean=0.0)
utils.init_distributed_mode(args)
print(args)
if args.distillation_type != 'none' and args.finetune and not args.eval:
raise NotImplementedError("Finetuning with distillation not yet supported")
device = torch.device(args.device)
# fix the seed for reproducibility
seed = args.seed + utils.get_rank() + 10
torch.manual_seed(seed)
np.random.seed(seed)
# random.seed(seed)
cudnn.benchmark = True
args.aa = 'rand-m1-mstd0.5-inc1'
dataset_train_1, args.nb_classes = build_dataset(is_train=True, args=args)
args.aa = 'rand-m2-mstd0.5-inc1'
dataset_train_2, args.nb_classes = build_dataset(is_train=True, args=args)
args.aa = 'rand-m3-mstd0.5-inc1'
dataset_train_3, args.nb_classes = build_dataset(is_train=True, args=args)
args.aa = 'rand-m4-mstd0.5-inc1'
dataset_train_4, args.nb_classes = build_dataset(is_train=True, args=args)
args.aa = 'rand-m5-mstd0.5-inc1'
dataset_train_5, args.nb_classes = build_dataset(is_train=True, args=args)
args.aa = 'rand-m6-mstd0.5-inc1'
dataset_train_6, args.nb_classes = build_dataset(is_train=True, args=args)
args.aa = 'rand-m7-mstd0.5-inc1'
dataset_train_7, args.nb_classes = build_dataset(is_train=True, args=args)
args.aa = 'rand-m8-mstd0.5-inc1'
dataset_train_8, args.nb_classes = build_dataset(is_train=True, args=args)
args.aa = 'rand-m9-mstd0.5-inc1'
dataset_train_9, args.nb_classes = build_dataset(is_train=True, args=args)
dataset_val, _ = build_dataset(is_train=False, args=args)
if args.distributed:
num_tasks = utils.get_world_size()
global_rank = utils.get_rank()
if args.repeated_aug:
sampler_train = RASampler(
dataset_train, num_replicas=num_tasks, rank=global_rank, shuffle=True
)
else:
sampler_train_1 = torch.utils.data.DistributedSampler(
dataset_train_1, num_replicas=num_tasks, rank=global_rank, shuffle=True
)
sampler_train_2 = torch.utils.data.DistributedSampler(
dataset_train_2, num_replicas=num_tasks, rank=global_rank, shuffle=True
)
sampler_train_3 = torch.utils.data.DistributedSampler(
dataset_train_3, num_replicas=num_tasks, rank=global_rank, shuffle=True
)
sampler_train_4 = torch.utils.data.DistributedSampler(
dataset_train_4, num_replicas=num_tasks, rank=global_rank, shuffle=True
)
sampler_train_5 = torch.utils.data.DistributedSampler(
dataset_train_5, num_replicas=num_tasks, rank=global_rank, shuffle=True
)
sampler_train_6 = torch.utils.data.DistributedSampler(
dataset_train_6, num_replicas=num_tasks, rank=global_rank, shuffle=True
)
sampler_train_7 = torch.utils.data.DistributedSampler(
dataset_train_7, num_replicas=num_tasks, rank=global_rank, shuffle=True
)
sampler_train_8 = torch.utils.data.DistributedSampler(
dataset_train_8, num_replicas=num_tasks, rank=global_rank, shuffle=True
)
sampler_train_9 = torch.utils.data.DistributedSampler(
dataset_train_9, num_replicas=num_tasks, rank=global_rank, shuffle=True
)
if args.dist_eval:
if len(dataset_val) % num_tasks != 0:
print('Warning: Enabling distributed evaluation with an eval dataset not divisible by process number. '
'This will slightly alter validation results as extra duplicate entries are added to achieve '
'equal num of samples per-process.')
sampler_val = torch.utils.data.DistributedSampler(
dataset_val, num_replicas=num_tasks, rank=global_rank, shuffle=False)
else:
sampler_val = torch.utils.data.SequentialSampler(dataset_val)
else:
sampler_train = torch.utils.data.RandomSampler(dataset_train)
sampler_val = torch.utils.data.SequentialSampler(dataset_val)
data_loader_train_1 = torch.utils.data.DataLoader(
dataset_train_1, sampler=sampler_train_1,
batch_size=args.batch_size,
num_workers=args.num_workers,
pin_memory=True,
drop_last=True,
)
data_loader_train_2 = torch.utils.data.DataLoader(
dataset_train_2, sampler=sampler_train_2,
batch_size=args.batch_size,
num_workers=args.num_workers,
pin_memory=True,
drop_last=True,
)
data_loader_train_3 = torch.utils.data.DataLoader(
dataset_train_3, sampler=sampler_train_3,
batch_size=args.batch_size,
num_workers=args.num_workers,
pin_memory=True,
drop_last=True,
)
data_loader_train_4 = torch.utils.data.DataLoader(
dataset_train_4, sampler=sampler_train_4,
batch_size=args.batch_size,
num_workers=args.num_workers,
pin_memory=True,
drop_last=True,
)
data_loader_train_5 = torch.utils.data.DataLoader(
dataset_train_5, sampler=sampler_train_5,
batch_size=args.batch_size,
num_workers=args.num_workers,
pin_memory=True,
drop_last=True,
)
data_loader_train_6 = torch.utils.data.DataLoader(
dataset_train_6, sampler=sampler_train_6,
batch_size=args.batch_size,
num_workers=args.num_workers,
pin_memory=True,
drop_last=True,
)
data_loader_train_7 = torch.utils.data.DataLoader(
dataset_train_7, sampler=sampler_train_7,
batch_size=args.batch_size,
num_workers=args.num_workers,
pin_memory=True,
drop_last=True,
)
data_loader_train_8 = torch.utils.data.DataLoader(
dataset_train_8, sampler=sampler_train_8,
batch_size=args.batch_size,
num_workers=args.num_workers,
pin_memory=True,
drop_last=True,
)
data_loader_train_9 = torch.utils.data.DataLoader(
dataset_train_9, sampler=sampler_train_9,
batch_size=args.batch_size,
num_workers=args.num_workers,
pin_memory=True,
drop_last=True,
)
data_loader_val = torch.utils.data.DataLoader(
dataset_val, sampler=sampler_val,
batch_size=int(0.25 * args.batch_size),
num_workers=args.num_workers,
pin_memory=True,
drop_last=False
)
mixup_fn = None
mixup_active = args.mixup > 0 or args.cutmix > 0. or args.cutmix_minmax is not None
if mixup_active:
mixup_fn = Mixup(
mixup_alpha=args.mixup, cutmix_alpha=args.cutmix, cutmix_minmax=args.cutmix_minmax,
prob=args.mixup_prob, switch_prob=args.mixup_switch_prob, mode=args.mixup_mode,
label_smoothing=args.smoothing, num_classes=1000)
if args.model.startswith('resnet'):
if args.sing == 'singbn':
norm_layer = nn.BatchNorm2d
elif args.sing == 'singgbn':
if args.forward_time == 8:
norm_layer = EightBN
elif args.forward_time == 4:
norm_layer = FourBN
else:
if args.sing == 'singln':
norm_layer = SingLN
else:
norm_layer = None
print(f"Creating model: {args.model}")
if args.model.startswith('resnet'):
model = advres.__dict__[args.model](norm_layer=norm_layer)
else:
model = create_model(
args.model,
pretrained=False,
num_classes=args.nb_classes,
drop_rate=args.drop,
drop_path_rate=args.drop_path,
drop_block_rate=None, #
norm_layer = norm_layer,
# norm = args.norm,
)
model.set_attacker(train_attacker)
if args.sing != 'none':
model.set_sing(True)
else:
model.set_sing(False)
if mixup_active:
model.set_mixup_fn(True)
else:
model.set_mixup_fn(False)
if args.finetune:
if args.finetune.startswith('https'):
checkpoint = torch.hub.load_state_dict_from_url(
args.finetune, map_location='cpu', check_hash=True)
else:
checkpoint = torch.load(args.finetune, map_location='cpu')
checkpoint_model = checkpoint['model']
state_dict = model.state_dict()
for k in ['head.weight', 'head.bias', 'head_dist.weight', 'head_dist.bias']:
if k in checkpoint_model and checkpoint_model[k].shape != state_dict[k].shape:
print(f"Removing key {k} from pretrained checkpoint")
del checkpoint_model[k]
# interpolate position embedding
pos_embed_checkpoint = checkpoint_model['pos_embed']
embedding_size = pos_embed_checkpoint.shape[-1]
num_patches = model.patch_embed.num_patches
num_extra_tokens = model.pos_embed.shape[-2] - num_patches
# height (== width) for the checkpoint position embedding
orig_size = int((pos_embed_checkpoint.shape[-2] - num_extra_tokens) ** 0.5)
# height (== width) for the new position embedding
new_size = int(num_patches ** 0.5)
# class_token and dist_token are kept unchanged
extra_tokens = pos_embed_checkpoint[:, :num_extra_tokens]
# only the position tokens are interpolated
pos_tokens = pos_embed_checkpoint[:, num_extra_tokens:]
pos_tokens = pos_tokens.reshape(-1, orig_size, orig_size, embedding_size).permute(0, 3, 1, 2)
pos_tokens = torch.nn.functional.interpolate(
pos_tokens, size=(new_size, new_size), mode='bicubic', align_corners=False)
pos_tokens = pos_tokens.permute(0, 2, 3, 1).flatten(1, 2)
new_pos_embed = torch.cat((extra_tokens, pos_tokens), dim=1)
checkpoint_model['pos_embed'] = new_pos_embed
model.load_state_dict(checkpoint_model, strict=False)
model.to(device)
model_ema = None
if args.model_ema:
# Important to create EMA model after cuda(), DP wrapper, and AMP but before SyncBN and DDP wrapper
model_ema = ModelEma(
model,
decay=args.model_ema_decay,
device='cpu' if args.model_ema_force_cpu else '',
resume='')
model_without_ = model
if args.distributed:
model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.gpu])
model_without_ddp = model.module
n_parameters = sum(p.numel() for p in model.parameters() if p.requires_grad)
print('number of params:', n_parameters)
linear_scaled_lr = args.lr * args.batch_size * utils.get_world_size() * 4 / args.adjust_lr
args.lr = linear_scaled_lr
optimizer = create_optimizer(args, model_without_ddp)
# loss_scaler = scaler.AccumulativeScaler()
loss_scaler = NativeScaler()
lr_scheduler, _ = create_scheduler(args, optimizer)
criterion = LabelSmoothingCrossEntropy()
if args.mixup > 0.:
# smoothing is handled with mixup label transform
criterion = SoftTargetCrossEntropy()
elif args.smoothing:
criterion = LabelSmoothingCrossEntropy(smoothing=args.smoothing)
else:
criterion = torch.nn.CrossEntropyLoss()
teacher_model = None
if args.distillation_type != 'none':
assert args.teacher_path, 'need to specify teacher-path when using distillation'
print(f"Creating teacher model: {args.teacher_model}")
teacher_model = create_model(
args.teacher_model,
pretrained=False,
num_classes=args.nb_classes,
global_pool='avg',
)
if args.teacher_path.startswith('https'):
checkpoint = torch.hub.load_state_dict_from_url(
args.teacher_path, map_location='cpu', check_hash=True)
else:
checkpoint = torch.load(args.teacher_path, map_location='cpu')
teacher_model.load_state_dict(checkpoint['model'])
teacher_model.to(device)
teacher_model.eval()
# wrap the criterion in our custom DistillationLoss, which
# just dispatches to the original criterion if args.distillation_type is 'none'
criterion = DistillationLoss(
criterion, teacher_model, args.distillation_type, args.distillation_alpha, args.distillation_tau
)
output_dir = Path(args.output_dir)
if args.resume:
if args.resume.startswith('https'):
checkpoint = torch.hub.load_state_dict_from_url(
args.resume, map_location='cpu', check_hash=True)
else:
checkpoint = torch.load(args.resume, map_location='cpu')
model_without_ddp.load_state_dict(checkpoint['model'], strict=False)
# clean optimizer, only load weight.
# if False:
if not args.eval and 'optimizer' in checkpoint and 'lr_scheduler' in checkpoint and 'epoch' in checkpoint:
optimizer.load_state_dict(checkpoint['optimizer'])
lr_scheduler.load_state_dict(checkpoint['lr_scheduler'])
args.start_epoch = checkpoint['epoch'] + 1
if args.model_ema:
utils._load_checkpoint_for_ema(model_ema, checkpoint['model_ema'])
if 'scaler' in checkpoint:
loss_scaler.load_state_dict(checkpoint['scaler'])
if args.eval:
model.module.set_attacker(eval_attacker_0)
test_stats = evaluate(data_loader_val, model, device)
print('Final Test_attacker_step_0', test_stats["acc1"])
model.module.set_attacker(eval_attacker_5)
test_stats = evaluate(data_loader_val, model, device)
print('Final Test_attacker_step_5', test_stats["acc1"])
model.module.set_attacker(eval_attacker_50)
test_stats = evaluate(data_loader_val, model, device)
print('Final Test_attacker_step_50', test_stats["acc1"])
model.module.set_attacker(eval_attacker_100)
test_stats = evaluate(data_loader_val, model, device)
print('Final Test_attacker_step_100', test_stats["acc1"])
return
# Train and val
writer = SummaryWriter(log_dir=args.output_dir)
print(f"Start training for {args.epochs} epochs")
start_time = time.time()
max_accuracy = 0.0
max_accuracy_0 = 0.0
max_accuracy_5 = 0.0
test_stats_0 = {}
test_stats_5 = {}
test_stats = {}
for epoch in range(args.start_epoch, args.epochs):
if epoch == 0:
data_loader_train = data_loader_train_1
args.mixup_prob=0.5
elif epoch == 1:
data_loader_train = data_loader_train_1
args.mixup_prob=0.6
elif epoch == 2:
data_loader_train = data_loader_train_2
args.mixup_prob=0.7
elif epoch == 3:
data_loader_train = data_loader_train_3
args.mixup_prob=0.8
elif epoch == 4:
data_loader_train = data_loader_train_4
args.mixup_prob=0.9
elif epoch == 5:
data_loader_train = data_loader_train_5
args.mixup_prob=1.0
elif epoch == 6:
data_loader_train = data_loader_train_6
args.mixup_prob=1.0
args.cutmix = 1.0
args.mixup_switch_prob = 0.1
elif epoch == 7:
data_loader_train = data_loader_train_7
args.mixup_prob=1.0
args.cutmix = 1.0
args.mixup_switch_prob = 0.2
elif epoch == 8:
data_loader_train = data_loader_train_8
args.mixup_prob=0.9
args.cutmix = 1.0
args.mixup_switch_prob = 0.3
elif epoch == 9:
data_loader_train = data_loader_train_9
args.mixup_prob=0.95
args.cutmix = 1.0
args.mixup_switch_prob = 0.4
elif epoch >= 10:
data_loader_train = data_loader_train_9
args.mixup_prob=1.0
args.cutmix = 1.0
args.mixup_switch_prob = 0.5
mixup_fn = Mixup(
mixup_alpha=args.mixup, cutmix_alpha=args.cutmix, cutmix_minmax=args.cutmix_minmax,
prob=args.mixup_prob, switch_prob=args.mixup_switch_prob, mode=args.mixup_mode,
label_smoothing=args.smoothing, num_classes=args.nb_classes)
if args.distributed:
data_loader_train.sampler.set_epoch(epoch)
model.module.set_attacker(train_attacker)
train_stats = train_one_epoch(
model, criterion, data_loader_train,
optimizer, device, epoch, loss_scaler,
args.clip_grad, model_ema, mixup_fn,
set_training_mode=args.finetune == '', # keep in eval mode during finetuning
mix=False, num_classes=args.nb_classes,)
# print(train_stats)
writer.add_scalar('Train/loss', train_stats['loss'], epoch)
writer.add_scalar('Train/lr', train_stats["lr"], epoch)
if epoch >= 0:
lr_scheduler.step(epoch)
if args.output_dir:
checkpoint_paths = [output_dir / 'checkpoint_{:04d}.pth'.format(epoch)]
if args.model_ema == True:
for checkpoint_path in checkpoint_paths:
utils.save_on_master({
'model': model_without_ddp.state_dict(),
'optimizer': optimizer.state_dict(),
'lr_scheduler': lr_scheduler.state_dict(),
'epoch': epoch,
'model_ema': get_state_dict(model_ema),
'scaler': loss_scaler.state_dict(),
'args': args,
}, checkpoint_path)
else:
for checkpoint_path in checkpoint_paths:
utils.save_on_master({
'model': model_without_ddp.state_dict(),
'optimizer': optimizer.state_dict(),
'lr_scheduler': lr_scheduler.state_dict(),
'epoch': epoch,
# 'model_ema': get_state_dict(model_ema),
'scaler': loss_scaler.state_dict(),
'args': args,
}, checkpoint_path)
if args.sing != 'none':
if epoch == args.epochs - 1 and args.attack_iter!=0:
model.module.set_attacker(eval_attacker_0)
test_stats = evaluate(data_loader_val, model, device)
print('Final Test_attacker_step_0', test_stats["acc1"])
model.module.set_attacker(eval_attacker_5)
test_stats = evaluate(data_loader_val, model, device)
print('Final Test_attacker_step_5', test_stats["acc1"])
model.module.set_attacker(eval_attacker_10)
test_stats = evaluate(data_loader_val, model, device)
print('Final Test_attacker_step_10', test_stats["acc1"])
model.module.set_attacker(eval_attacker_50)
test_stats = evaluate(data_loader_val, model, device)
print('Final Test_attacker_step_50', test_stats["acc1"])
model.module.set_attacker(eval_attacker_100)
test_stats = evaluate(data_loader_val, model, device)
print('Final Test_attacker_step_100', test_stats["acc1"])
else:
if True: #epoch<15 or (epoch % 5 == 0 and args.attack_iter!=0):
model.module.set_attacker(eval_attacker_0)
test_stats_0 = evaluate(data_loader_val, model, device)
writer.add_scalar('Test/loss_0', test_stats_0['loss'], epoch)
writer.add_scalar('Test/acc1_0', test_stats_0['acc1'], epoch)
print(f"Accuracy of the eval_attacker_0 on the {len(dataset_val)} test images: {test_stats_0['acc1']:.1f}%")
max_accuracy_0 = max(max_accuracy_0, test_stats_0["acc1"])
print(f'Max accuracy_0: {max_accuracy_0:.2f}%')
if epoch % 5 == 0 and args.attack_iter!=0:
model.module.set_attacker(eval_attacker_5)
test_stats_5 = evaluate(data_loader_val, model, device)
writer.add_scalar('Test/loss_5', test_stats_5['loss'], epoch)
writer.add_scalar('Test/acc1_5', test_stats_5['acc1'], epoch)
print(f"Accuracy of the eval_attacker_5 on the {len(dataset_val)} test images: {test_stats_5['acc1']:.1f}%")
max_accuracy_5 = max(max_accuracy_5, test_stats_5["acc1"])
print(f'Max accuracy_5: {max_accuracy_5:.2f}%')
else:
test_stats = evaluate(data_loader_val, model, device)
writer.add_scalar('Test/loss', test_stats['loss'], epoch)
writer.add_scalar('Test/acc1', test_stats['acc1'], epoch)
print(f"Accuracy of the network on the {len(dataset_val)} test images: {test_stats['acc1']:.1f}%")
max_accuracy = max(max_accuracy, test_stats["acc1"])
print(f'Max accuracy: {max_accuracy:.2f}%')
# if args.mix == 'none' and args.sing == 'none':
if args.sing == 'none':
log_stats = {**{f'train_{k}': v for k, v in train_stats.items()},
**{f'test_{k}': v for k, v in test_stats.items()},
'epoch': epoch,
'n_parameters': n_parameters}
else:
log_stats = {**{f'train_{k}': v for k, v in train_stats.items()},
**{f'test_0_{k}': v for k, v in test_stats_0.items()},
**{f'test_5_{k}': v for k, v in test_stats_5.items()},
'epoch': epoch,
'n_parameters': n_parameters}
if args.output_dir and utils.is_main_process():
with (output_dir / "log.txt").open("a") as f:
f.write(json.dumps(log_stats) + "\n")
total_time = time.time() - start_time
total_time_str = str(datetime.timedelta(seconds=int(total_time)))
print('Training time {}'.format(total_time_str))
writer.close()
class FourBN(nn.Module):
def __init__(self, num_features, *args, virtual2actual_batch_size_ratio=2, affine=False, sync_stats=False, **kwargs):
super(FourBN, self).__init__()
self.bn0 = GhostBN2D_Old(num_features = num_features, *args, virtual2actual_batch_size_ratio=virtual2actual_batch_size_ratio, affine=affine, sync_stats=sync_stats, **kwargs)
self.bn1 = GhostBN2D_Old(num_features = num_features, *args, virtual2actual_batch_size_ratio=virtual2actual_batch_size_ratio, affine=affine, sync_stats=sync_stats, **kwargs)
self.bn2 = GhostBN2D_Old(num_features = num_features, *args, virtual2actual_batch_size_ratio=virtual2actual_batch_size_ratio, affine=affine, sync_stats=sync_stats, **kwargs)
self.bn3 = GhostBN2D_Old(num_features = num_features, *args, virtual2actual_batch_size_ratio=virtual2actual_batch_size_ratio, affine=affine, sync_stats=sync_stats, **kwargs)
self.bn_type = 'bn0'
self.aff = Affine(width=num_features, k=1)
def forward(self, input):
if self.bn_type == 'bn0':
input = self.bn0(input)
elif self.bn_type == 'bn1':
input = self.bn1(input)
elif self.bn_type == 'bn2':
input = self.bn2(input)
elif self.bn_type == 'bn3':
input = self.bn3(input)
input = self.aff(input)
return input
class EightBN(nn.Module):
def __init__(self, num_features, *args, virtual2actual_batch_size_ratio=2, affine=False, sync_stats=False, **kwargs):
super(EightBN, self).__init__()
self.bn0 = GhostBN2D_Old(num_features = num_features, *args, virtual2actual_batch_size_ratio=virtual2actual_batch_size_ratio, affine=affine, sync_stats=sync_stats, **kwargs)
self.bn1 = GhostBN2D_Old(num_features = num_features, *args, virtual2actual_batch_size_ratio=virtual2actual_batch_size_ratio, affine=affine, sync_stats=sync_stats, **kwargs)
self.bn2 = GhostBN2D_Old(num_features = num_features, *args, virtual2actual_batch_size_ratio=virtual2actual_batch_size_ratio, affine=affine, sync_stats=sync_stats, **kwargs)
self.bn3 = GhostBN2D_Old(num_features = num_features, *args, virtual2actual_batch_size_ratio=virtual2actual_batch_size_ratio, affine=affine, sync_stats=sync_stats, **kwargs)
self.bn4 = GhostBN2D_Old(num_features = num_features, *args, virtual2actual_batch_size_ratio=virtual2actual_batch_size_ratio, affine=affine, sync_stats=sync_stats, **kwargs)
self.bn5 = GhostBN2D_Old(num_features = num_features, *args, virtual2actual_batch_size_ratio=virtual2actual_batch_size_ratio, affine=affine, sync_stats=sync_stats, **kwargs)
self.bn6 = GhostBN2D_Old(num_features = num_features, *args, virtual2actual_batch_size_ratio=virtual2actual_batch_size_ratio, affine=affine, sync_stats=sync_stats, **kwargs)
self.bn7 = GhostBN2D_Old(num_features = num_features, *args, virtual2actual_batch_size_ratio=virtual2actual_batch_size_ratio, affine=affine, sync_stats=sync_stats, **kwargs)
self.bn_type = 'bn0'
self.aff = Affine(width=num_features, k=1)
def forward(self, input):
if self.bn_type == 'bn0':
input = self.bn0(input)
elif self.bn_type == 'bn1':
input = self.bn1(input)
elif self.bn_type == 'bn2':
input = self.bn2(input)
elif self.bn_type == 'bn3':
input = self.bn3(input)
elif self.bn_type == 'bn4':
input = self.bn4(input)
elif self.bn_type == 'bn5':
input = self.bn5(input)
elif self.bn_type == 'bn6':
input = self.bn6(input)
elif self.bn_type == 'bn7':
input = self.bn7(input)
input = self.aff(input)
return input
class SingLN(nn.LayerNorm):
def __init__(self, normalized_shape, eps = 1e-6, elementwise_affine = True):
super(SingLN, self).__init__(normalized_shape, eps, elementwise_affine)
self.batch_type = 'clean'
def forward(self, input):
if self.batch_type == 'adv':
input = super(SingLN, self).forward(input)
elif self.batch_type == 'clean':
input = super(SingLN, self).forward(input)
else:
assert self.batch_type == 'mix'
input = super(SingLN, self).forward(input)
return input
if __name__ == '__main__':
parser = argparse.ArgumentParser('Advtraining and evaluation script', parents=[get_args_parser()])
args = parser.parse_args()
if args.output_dir:
Path(args.output_dir).mkdir(parents=True, exist_ok=True)
main(args)