-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathemcal.h
184 lines (147 loc) · 5.97 KB
/
emcal.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
// -*- mode: c++; -*-
#ifndef EMCAL_H_
#define EMCAL_H_
#include <vector>
#include <set>
#include <AliVCluster.h>
#include <AliVCaloCells.h>
#include <AliVVZERO.h>
#include "special_function.h"
#include "keras_model.h"
#include "emcal_cell.h"
namespace {
void cell_max_cross(Int_t &cell_id_max,
Double_t &cell_energy_max,
Double_t &energy_cross,
AliVCluster *c, AliVCaloCells *emcal_cell)
{
std::set<Int_t> cluster_cell_id;
cell_id_max = -1;
cell_energy_max = -INFINITY;
for (Int_t j = 0; j < c->GetNCells(); j++) {
const Int_t cell_id = c->GetCellsAbsId()[j];
const Double_t cell_energy =
emcal_cell->GetCellAmplitude(cell_id);
cluster_cell_id.insert(cell_id);
if (cell_energy > cell_energy_max) {
cell_energy_max = cell_energy;
cell_id_max = cell_id;
}
}
energy_cross = NAN;
if (cell_id_max != -1) {
unsigned int cell_id_max_cross[4];
cell_cross(cell_id_max_cross, cell_id_max);
energy_cross = 0;
for (size_t j = 0; j < 4; j++) {
if (cluster_cell_id.find(cell_id_max_cross[j]) !=
cluster_cell_id.end()) {
energy_cross += emcal_cell->
GetCellAmplitude(cell_id_max_cross[j]);
}
}
}
}
bool cell_masked(AliVCluster *c, std::vector<bool> emcal_mask)
{
for (Int_t j = 0; j < c->GetNCells(); j++) {
const Int_t cell_id = c->GetCellsAbsId()[j];
if (cell_id >= 0 &&
cell_id < static_cast<Int_t>(emcal_mask.size()) &&
!emcal_mask[cell_id]) {
return true;
}
}
return false;
}
std::vector<float>
cluster_cell_keras_inference(AliVCluster *cluster,
AliVCaloCells *cell,
const double *vertex,
const AliVVZERO *v0,
KerasModel &model)
{
Int_t cell_id_max = -1;
Double_t cell_energy_max = -INFINITY;
Double_t cell_cross = NAN;
cell_max_cross(cell_id_max, cell_energy_max, cell_cross,
cluster, cell);
unsigned int sm_max;
unsigned int nphi_max;
to_sm_nphi(sm_max, nphi_max, cell_id_max);
#if 0
if (!inside_edge(cell_id_max, 2)) {
return std::vector<float>();
}
#endif
TLorentzVector p;
cluster->GetMomentum(p, vertex);
unsigned int cell_id_5_5[25];
cell_5_5(cell_id_5_5, cell_id_max);
Tensor feature(29);
for (size_t i = 0; i < 25; i++) {
unsigned int sm;
unsigned int nphi;
to_sm_nphi(sm, nphi, cell_id_5_5[i]);
feature(i) = sm == sm_max ?
cell->GetCellAmplitude(cell_id_5_5[i]) / p.E() :
0;
if (std::isnan(feature(i))) {
feature(i) = 0;
}
}
feature(25) = 1 / sqrt(p.E());
feature(26) = p.Eta();
static const double sm_center[20][2] = {
{ 1, 1.5707958333333356 },
{ -1, 1.570796701388894 },
{ 1, 1.9198628472222254 },
{ -1, 1.9198605902777761 },
{ 1, 2.2689267361111165 },
{ -1, 2.2689289930555647 },
{ 1, 2.6179921875000085 },
{ -1, 2.617995138888896 },
{ 1, 2.9670605902777836 },
{ -1, 2.9670579861111235 },
{ 1, 3.2079436405129194 },
{ -1, 3.2083967655129197 },
{ 1, -1.5707963541666699 },
{ -1, -1.5707968750000028 },
{ 1, -1.2217302083333352 },
{ -1, -1.2217322916666704 },
{ 1, -0.8726658854166689 },
{ -1, -0.8726617187500013 },
{ 1, -0.6317869791666666 },
{ -1, -0.6313296875 }
};
double min_dazimuth = M_PI;
for (size_t i = 0; i < 20; i++) {
if (sm_center[i][0] * p.Eta() >= 0) {
const double dazimuth = angular_range_reduce(
p.Phi() - sm_center[i][1]);
if (fabs(dazimuth) < min_dazimuth) {
min_dazimuth = dazimuth;
}
}
}
feature(27) = min_dazimuth;
double sum_v0 = 0;
for (size_t i = 0; i < 64; i++) {
sum_v0 += v0->GetMultiplicity(i);
}
feature(28) = sum_v0;
#if 0
fprintf(stderr, "%s:%d: %g %g %g\n", __FILE__, __LINE__,
feature(25), feature(27), feature(28));
#endif
static const float mean[29] = {2.12970655e-03, 3.88862821e-03, 4.92862100e-03, 3.90173425e-03, 2.08488060e-03, 4.72605834e-03, 1.24210687e-02, 4.01937366e-02, 1.25719616e-02, 4.69736801e-03, 9.08698235e-03, 5.94846457e-02, 6.88571036e-01, 6.02749288e-02, 9.03223641e-03, 4.62681567e-03, 1.22468071e-02, 3.87016498e-02, 1.23087661e-02, 4.65176860e-03, 2.12111045e-03, 3.95621359e-03, 4.97721089e-03, 3.94566311e-03, 2.14471412e-03, 3.06629092e-01, -8.71083885e-03, 1.00243546e-03, 3.31128784e+02};
static const float std[29] = {1.60925817e-02, 2.37639789e-02, 2.78392453e-02, 2.37607714e-02, 1.58410259e-02, 2.56051980e-02, 3.41129899e-02, 6.61690012e-02, 3.42592224e-02, 2.55473647e-02, 3.53715308e-02, 8.71860087e-02, 1.73532262e-01, 8.74797031e-02, 3.50968055e-02, 2.52052099e-02, 3.41960452e-02, 6.45336062e-02, 3.40170525e-02, 2.53446139e-02, 1.57360733e-02, 2.41008513e-02, 2.80672945e-02, 2.39805095e-02, 1.62536539e-02, 3.54581177e-02, 3.99770141e-01, 7.72248954e-02, 1.65971893e+02};
for (size_t i = 0; i < 29; i++) {
feature(i) = (feature(i) - mean[i]) / std[i];
}
Tensor output_tensor;
model.Apply(&feature, &output_tensor);
return output_tensor.data_;
}
}
#endif // EMCAL_H_