-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathsyn.m
95 lines (88 loc) · 4.41 KB
/
syn.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% 设置初始化信息
% N:设置卡尔曼滤波器追踪点数
% r:设置估计变量个数,这里r=2 即S、V
% s:从基站接收CCP时间戳 (输入量)
% v:时钟漂移率 (输出估计量)
% dt:主基站发送CCP的间隔 (输入量)
% wt: 系统噪声
% //没用 vt: 量测噪声,方差为3×10^(-20) 3*exp(-20)
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
clear all;
close all;
N = 128;
r = 2;
t = 1:1:N;
T = 1;
load('matlab.mat')
load('matlab1.mat')
% 所有的观测值数据
% s = zeros(1,N); %生成1行N列的零填充的矩阵
% v = zeros(1,N);
% s0 = 0;
% v0 = 1;
% for n = 1:N
% v(n) = v0 + a(n)*n;
% s(n) = 1000+v0*n+0.5*a(n)*n*n;
% end
% wt = randn(1,N); %1行N列随机数填充的矩阵
% wt = sqrt(4)*wt./std(wt);
%这里wt什么意思?
%sqrt返回平方根
%./点除 如果a、b是矩阵,a./b就是a、b中对应的每个元素相除,得到一个新的矩阵
%返回标准差
% s = s + wt;
% v = v + wt;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% 卡尔曼滤波部分,继承之前初始化变量
% A:转移矩阵 2*2维 (包含输入量dt)
% H:量测矩阵 1*2维
% Qk:系统噪声矩阵 2*2维
% Rk:量测噪声矩阵 1*1维
% P0:均方误差矩阵初始值 2*2维
% Y:状态矩阵,由k_s,k_v,k_a组成 (两个输出估计量) 2*2维
% Y0:状态矩阵的初始值 2*2维
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
Y0 = [0 1]';
Y = [Y0 zeros(r,N-1)];
%A = [1 dt;0 1];
H = [1 0];
Qk = [0 0;0 5*exp(-20)];
Rk = 3*exp(-20);
P0 = [0 0;0 0];
P1 = P0;
P2 = zeros(r,r);
for k = 2:N
A = [1 tx(1,k)-tx(1,k-1);0 1];
Y(:,k) = A*Y(:,k);
P2 = A*P1*A'+Qk;
Kk = P2*H'*inv(H*P2*H'+Rk);
Y(:,k+1) = Y(:,k)+Kk*(s(:,k)-H*Y(:,k));
P1 = (eye(r,r)-Kk*H)*P2;
% format long
v(k) = (s(1,k)-s(1,k-1))/(tx(1,k)-tx(1,k-1)); %计算时钟漂移率
end
v(1) = 1;
k_s = Y(1,:);
k_v = Y(2,:);
subplot(3,1,1);
plot(t,s(t),'-',t,k_s(t),'o');
title('从基站接收CCP时间戳');
legend('实际值','估计值');
xlabel('迭代次数');
ylabel('从基站接收CCP时间戳');
subplot(3,1,2);
plot(t,s(t)-Y(1,t),'-');
title('实际值与估计值的差值');
%legend('实际值','估计值');
xlabel('迭代次数');
ylabel('实际值与估计值的差值');
axis([0,N,-100000000000,100000000000]);
subplot(3,1,3);
plot(t,v(t),t,k_v(t),'+');
title('时钟漂移率');
legend('实际值','估计值');
xlabel('迭代次数');
ylabel('时钟漂移率');
%axis([0,N,-2,2]);
axis([0,N,0.999999,1.000002]);