-
Notifications
You must be signed in to change notification settings - Fork 21
/
folder2lmdb.py
162 lines (125 loc) · 4.61 KB
/
folder2lmdb.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
import os
import os.path as osp
from PIL import Image
import six
import lmdb
import warnings
warnings.simplefilter(action='ignore', category=FutureWarning)
import pyarrow as pa
import torch.utils.data as data
from torch.utils.data import DataLoader
from torchvision.datasets import ImageFolder
def loads_pyarrow(buf):
"""
Args:
buf: the output of `dumps`.
"""
return pa.deserialize(buf)
class ImageFolderLMDB(data.Dataset):
def __init__(self, db_path, transform=None, target_transform=None):
self.db_path = db_path
self.env = lmdb.open(db_path, subdir=osp.isdir(db_path),
readonly=True, lock=False,
readahead=False, meminit=False)
with self.env.begin(write=False) as txn:
self.length = loads_pyarrow(txn.get(b'__len__'))
self.keys = loads_pyarrow(txn.get(b'__keys__'))
self.transform = transform
self.target_transform = target_transform
def __getstate__(self):
state = self.__dict__
state["env"] = None
return state
def __setstate__(self, state):
self.__dict__ = state
self.env = lmdb.open(self.db_path, subdir=osp.isdir(self.db_path),
readonly=True, lock=False,
readahead=False, meminit=False)
with self.env.begin(write=False) as txn:
self.length = loads_pyarrow(txn.get(b'__len__'))
self.keys = loads_pyarrow(txn.get(b'__keys__'))
def __getitem__(self, index):
env = self.env
with env.begin(write=False) as txn:
byteflow = txn.get(self.keys[index])
unpacked = loads_pyarrow(byteflow)
# load img
imgbuf = unpacked[0]
buf = six.BytesIO()
buf.write(imgbuf)
buf.seek(0)
img = Image.open(buf).convert('RGB')
# load label
target = unpacked[1]
# return img, target
if self.transform is not None:
img = self.transform(img)
# im2arr = np.array(img)
if self.target_transform is not None:
target = self.target_transform(target)
return img, target
# return im2arr, target
def __len__(self):
return self.length
def __repr__(self):
return self.__class__.__name__ + ' (' + self.db_path + ')'
def _get_labels(self):
env = self.env
with env.begin(write=False) as txn:
labels = [(None, loads_pyarrow(txn.get(self.keys[index]))[1]) for index in range(len(self))]
return labels
@property
def samples(self):
return self._get_labels()
def raw_reader(path):
with open(path, 'rb') as f:
bin_data = f.read()
return bin_data
def dumps_pyarrow(obj):
"""
Serialize an object.
Returns:
Implementation-dependent bytes-like object
"""
return pa.serialize(obj).to_buffer()
def folder2lmdb(dpath, name="train", write_frequency=5000):
directory = osp.expanduser(osp.join(dpath, name))
print("Loading dataset from %s" % directory)
dataset = ImageFolder(directory, loader=raw_reader)
data_loader = DataLoader(dataset, num_workers=4, collate_fn=lambda x: x)
lmdb_path = osp.join(dpath, "%s.lmdb" % name)
isdir = os.path.isdir(lmdb_path)
print("Generate LMDB to %s" % lmdb_path)
db = lmdb.open(lmdb_path, subdir=isdir,
map_size=1099511627776 * 2, readonly=False,
meminit=False, map_async=True)
txn = db.begin(write=True)
for idx, data in enumerate(data_loader):
image, label = data[0]
txn.put(u'{}'.format(idx).encode('ascii'), dumps_pyarrow((image, label)))
if idx % write_frequency == 0:
print("[%d/%d]" % (idx, len(data_loader)))
txn.commit()
txn = db.begin(write=True)
# finish iterating through dataset
txn.commit()
keys = [u'{}'.format(k).encode('ascii') for k in range(idx + 1)]
with db.begin(write=True) as txn:
txn.put(b'__keys__', dumps_pyarrow(keys))
txn.put(b'__len__', dumps_pyarrow(len(keys)))
print("Flushing database ...")
db.sync()
db.close()
if __name__ == "__main__":
import argparse
parser = argparse.ArgumentParser()
parser.add_argument(
'--dir', type=str, required=True,
help="The dataset directory to process, which should contrain a 'train' and a 'val' subfolder."
"The script will produce the lmdb files under the same directory."
)
args = parser.parse_args()
# generate lmdb
path = args.dir
folder2lmdb(path, name="train")
folder2lmdb(path, name="val")