diff --git a/README.md b/README.md index a672707..2b55d5e 100644 --- a/README.md +++ b/README.md @@ -89,6 +89,7 @@ This section partially refers to [DBLP](https://dblp.uni-trier.de/search?q=Feder | Vertically Federated Graph Neural Network for Privacy-Preserving Node Classification | ZJU | IJCAI :mortar_board: | 2022 | VFGNN[^VFGNN] | [[PUB](https://www.ijcai.org/proceedings/2022/272).] [[PDF](https://arxiv.org/abs/2005.11903)] | | SpreadGNN: Decentralized Multi-Task Federated Learning for Graph Neural Networks on Molecular Data | USC | AAAI:mortar_board: | 2022 | SpreadGNN[^SpreadGNN] | [[PUB](https://ojs.aaai.org/index.php/AAAI/article/view/20643).] [PDF](https://arxiv.org/abs/2106.02743) [[Code]](https://github.com/FedML-AI/SpreadGNN) [[解读](https://zhuanlan.zhihu.com/p/429720860)] | | FedGraph: Federated Graph Learning with Intelligent Sampling | UoA | TPDS :mortar_board: | 2022 | FedGraph[^FedGraph] | [[PUB.]](https://ieeexplore.ieee.org/abstract/document/9606516/) [Code](https://github.com/cfh19980612/FedGraph) [[解读](https://zhuanlan.zhihu.com/p/442233479)] | +| FedGCN: Convergence and Communication Tradeoffs in Federated Training of Graph Convolutional Networks | CMU | CIKM Workshop (Oral) | 2022 | FedGCN[^FedGCN] | [[PDF](https://arxiv.org/abs/2201.12433)] [[Code](https://github.com/yh-yao/FedGCN)] | | FedNI: Federated Graph Learning with Network Inpainting for Population-Based Disease Prediction | UESTC | TMI | 2022 | FedNI[^FedNI] | [[PUB](https://ieeexplore.ieee.org/document/9815303).] [[PDF](https://arxiv.org/abs/2112.10166)] | | FedEgo: Privacy-preserving Personalized Federated Graph Learning with Ego-graphs | SYSU | TOIS | 2022 | FedEgo[^FedEgo] | [PUB.] [PDF](https://arxiv.org/abs/2208.13685) [Code](https://github.com/fedego/fedego) | | A federated graph neural network framework for privacy-preserving personalization | THU | Nature Communications | 2022 | FedPerGNN[^FedPerGNN] | [[PUB](https://www.nature.com/articles/s41467-022-30714-9).] [[Code](https://github.com/wuch15/FedPerGNN)] [[解读](https://zhuanlan.zhihu.com/p/487383715)] | @@ -150,7 +151,6 @@ This section partially refers to [DBLP](https://dblp.uni-trier.de/search?q=Feder | Federated Graph Neural Networks: Overview, Techniques and Challenges **`surv.`** | | preprint | 2022 | | [[PDF](https://arxiv.org/abs/2202.07256)] | | Decentralized event-triggered federated learning with heterogeneous communication thresholds. | | preprint | 2022 | EF-HC[^EF-HC] | [PDF](https://github.com/ShahryarBQ/EF_HC) | | More is Better (Mostly): On the Backdoor Attacks in Federated Graph Neural Networks | | preprint | 2022 | | [[PDF](https://arxiv.org/abs/2202.03195)] | -| FedGCN: Convergence and Communication Tradeoffs in Federated Training of Graph Convolutional Networks | | preprint | 2022 | FedGCN[^FedGCN] | [[PDF](https://arxiv.org/abs/2201.12433)] [[Code](https://github.com/yh-yao/FedGCN)] | | Federated Learning with Heterogeneous Architectures using Graph HyperNetworks | | preprint | 2022 | | [[PDF](https://arxiv.org/abs/2201.08459)] | | STFL: A Temporal-Spatial Federated Learning Framework for Graph Neural Networks | | preprint | 2021 | | [[PDF](https://arxiv.org/abs/2111.06750)] [[Code](https://github.com/jw9msjwjnpdrlfw/tsfl)] | | Graph-Fraudster: Adversarial Attacks on Graph Neural Network Based Vertical Federated Learning | | preprint | 2021 | | [[PDF](https://arxiv.org/abs/2110.06468)] [[Code](https://github.com/hgh0545/graph-fraudster)] |