You are given a 0-indexed integer array nums
. You are allowed to permute nums
into a new array perm
of your choosing.
We define the greatness of nums
be the number of indices 0 <= i < nums.length
for which perm[i] > nums[i]
.
Return the maximum possible greatness you can achieve after permuting nums
.
Example 1:
Input: nums = [1,3,5,2,1,3,1] Output: 4 Explanation: One of the optimal rearrangements is perm = [2,5,1,3,3,1,1]. At indices = 0, 1, 3, and 4, perm[i] > nums[i]. Hence, we return 4.
Example 2:
Input: nums = [1,2,3,4] Output: 3 Explanation: We can prove the optimal perm is [2,3,4,1]. At indices = 0, 1, and 2, perm[i] > nums[i]. Hence, we return 3.
Constraints:
1 <= nums.length <= 105
0 <= nums[i] <= 109
Solution 1: Greedy
We can sort the array
Then we define a pointer
Finally, we return the value of the pointer
The time complexity is
class Solution:
def maximizeGreatness(self, nums: List[int]) -> int:
nums.sort()
i = 0
for x in nums:
i += x > nums[i]
return i
class Solution {
public int maximizeGreatness(int[] nums) {
Arrays.sort(nums);
int i = 0;
for (int x : nums) {
if (x > nums[i]) {
++i;
}
}
return i;
}
}
class Solution {
public:
int maximizeGreatness(vector<int>& nums) {
sort(nums.begin(), nums.end());
int i = 0;
for (int x : nums) {
i += x > nums[i];
}
return i;
}
};
func maximizeGreatness(nums []int) int {
sort.Ints(nums)
i := 0
for _, x := range nums {
if x > nums[i] {
i++
}
}
return i
}
function maximizeGreatness(nums: number[]): number {
nums.sort((a, b) => a - b);
let i = 0;
for (const x of nums) {
if (x > nums[i]) {
i += 1;
}
}
return i;
}