There exists an infinitely large grid. You are currently at point (1, 1)
, and you need to reach the point (targetX, targetY)
using a finite number of steps.
In one step, you can move from point (x, y)
to any one of the following points:
(x, y - x)
(x - y, y)
(2 * x, y)
(x, 2 * y)
Given two integers targetX
and targetY
representing the X-coordinate and Y-coordinate of your final position, return true
if you can reach the point from (1, 1)
using some number of steps, and false
otherwise.
Example 1:
Input: targetX = 6, targetY = 9 Output: false Explanation: It is impossible to reach (6,9) from (1,1) using any sequence of moves, so false is returned.
Example 2:
Input: targetX = 4, targetY = 7 Output: true Explanation: You can follow the path (1,1) -> (1,2) -> (1,4) -> (1,8) -> (1,7) -> (2,7) -> (4,7).
Constraints:
1 <= targetX, targetY <= 109
class Solution:
def isReachable(self, targetX: int, targetY: int) -> bool:
x = gcd(targetX, targetY)
return x & (x - 1) == 0
class Solution {
public boolean isReachable(int targetX, int targetY) {
int x = gcd(targetX, targetY);
return (x & (x - 1)) == 0;
}
private int gcd(int a, int b) {
return b == 0 ? a : gcd(b, a % b);
}
}
class Solution {
public:
bool isReachable(int targetX, int targetY) {
int x = gcd(targetX, targetY);
return (x & (x - 1)) == 0;
}
};
func isReachable(targetX int, targetY int) bool {
x := gcd(targetX, targetY)
return x&(x-1) == 0
}
func gcd(a, b int) int {
if b == 0 {
return a
}
return gcd(b, a%b)
}
function isReachable(targetX: number, targetY: number): boolean {
const x = gcd(targetX, targetY);
return (x & (x - 1)) === 0;
}
function gcd(a: number, b: number): number {
return b == 0 ? a : gcd(b, a % b);
}