Skip to content

Latest commit

 

History

History
193 lines (163 loc) · 5.45 KB

File metadata and controls

193 lines (163 loc) · 5.45 KB

中文文档

Description

You are given a 0-indexed integer array nums of length n. The number of ways to partition nums is the number of pivot indices that satisfy both conditions:

  • 1 <= pivot < n
  • nums[0] + nums[1] + ... + nums[pivot - 1] == nums[pivot] + nums[pivot + 1] + ... + nums[n - 1]

You are also given an integer k. You can choose to change the value of one element of nums to k, or to leave the array unchanged.

Return the maximum possible number of ways to partition nums to satisfy both conditions after changing at most one element.

 

Example 1:

Input: nums = [2,-1,2], k = 3
Output: 1
Explanation: One optimal approach is to change nums[0] to k. The array becomes [3,-1,2].
There is one way to partition the array:
- For pivot = 2, we have the partition [3,-1 | 2]: 3 + -1 == 2.

Example 2:

Input: nums = [0,0,0], k = 1
Output: 2
Explanation: The optimal approach is to leave the array unchanged.
There are two ways to partition the array:
- For pivot = 1, we have the partition [0 | 0,0]: 0 == 0 + 0.
- For pivot = 2, we have the partition [0,0 | 0]: 0 + 0 == 0.

Example 3:

Input: nums = [22,4,-25,-20,-15,15,-16,7,19,-10,0,-13,-14], k = -33
Output: 4
Explanation: One optimal approach is to change nums[2] to k. The array becomes [22,4,-33,-20,-15,15,-16,7,19,-10,0,-13,-14].
There are four ways to partition the array.

 

Constraints:

  • n == nums.length
  • 2 <= n <= 105
  • -105 <= k, nums[i] <= 105

Solutions

Python3

class Solution:
    def waysToPartition(self, nums: List[int], k: int) -> int:
        n = len(nums)
        s = [nums[0]] * n
        right = defaultdict(int)
        for i in range(1, n):
            s[i] = s[i - 1] + nums[i]
            right[s[i - 1]] += 1

        ans = 0
        if s[-1] % 2 == 0:
            ans = right[s[-1] // 2]

        left = defaultdict(int)
        for v, x in zip(s, nums):
            d = k - x
            if (s[-1] + d) % 2 == 0:
                t = left[(s[-1] + d) // 2] + right[(s[-1] - d) // 2]
                if ans < t:
                    ans = t
            left[v] += 1
            right[v] -= 1
        return ans

Java

class Solution {
    public int waysToPartition(int[] nums, int k) {
        int n = nums.length;
        int[] s = new int[n];
        s[0] = nums[0];
        Map<Integer, Integer> right = new HashMap<>();
        for (int i = 0; i < n - 1; ++i) {
            right.merge(s[i], 1, Integer::sum);
            s[i + 1] = s[i] + nums[i + 1];
        }
        int ans = 0;
        if (s[n - 1] % 2 == 0) {
            ans = right.getOrDefault(s[n - 1] / 2, 0);
        }
        Map<Integer, Integer> left = new HashMap<>();
        for (int i = 0; i < n; ++i) {
            int d = k - nums[i];
            if ((s[n - 1] + d) % 2 == 0) {
                int t = left.getOrDefault((s[n - 1] + d) / 2, 0)
                    + right.getOrDefault((s[n - 1] - d) / 2, 0);
                ans = Math.max(ans, t);
            }
            left.merge(s[i], 1, Integer::sum);
            right.merge(s[i], -1, Integer::sum);
        }
        return ans;
    }
}

C++

class Solution {
public:
    int waysToPartition(vector<int>& nums, int k) {
        int n = nums.size();
        long long s[n];
        s[0] = nums[0];
        unordered_map<long long, int> right;
        for (int i = 0; i < n - 1; ++i) {
            right[s[i]]++;
            s[i + 1] = s[i] + nums[i + 1];
        }
        int ans = 0;
        if (s[n - 1] % 2 == 0) {
            ans = right[s[n - 1] / 2];
        }
        unordered_map<long long, int> left;
        for (int i = 0; i < n; ++i) {
            int d = k - nums[i];
            if ((s[n - 1] + d) % 2 == 0) {
                int t = left[(s[n - 1] + d) / 2] + right[(s[n - 1] - d) / 2];
                ans = max(ans, t);
            }
            left[s[i]]++;
            right[s[i]]--;
        }
        return ans;
    }
};

Go

func waysToPartition(nums []int, k int) (ans int) {
	n := len(nums)
	s := make([]int, n)
	s[0] = nums[0]
	right := map[int]int{}
	for i := range nums[:n-1] {
		right[s[i]]++
		s[i+1] = s[i] + nums[i+1]
	}
	if s[n-1]%2 == 0 {
		ans = right[s[n-1]/2]
	}
	left := map[int]int{}
	for i, x := range nums {
		d := k - x
		if (s[n-1]+d)%2 == 0 {
			t := left[(s[n-1]+d)/2] + right[(s[n-1]-d)/2]
			if ans < t {
				ans = t
			}
		}
		left[s[i]]++
		right[s[i]]--
	}
	return
}

...