Given a 0-indexed integer array nums
, return the number of distinct quadruplets (a, b, c, d)
such that:
nums[a] + nums[b] + nums[c] == nums[d]
, anda < b < c < d
Example 1:
Input: nums = [1,2,3,6] Output: 1 Explanation: The only quadruplet that satisfies the requirement is (0, 1, 2, 3) because 1 + 2 + 3 == 6.
Example 2:
Input: nums = [3,3,6,4,5] Output: 0 Explanation: There are no such quadruplets in [3,3,6,4,5].
Example 3:
Input: nums = [1,1,1,3,5] Output: 4 Explanation: The 4 quadruplets that satisfy the requirement are: - (0, 1, 2, 3): 1 + 1 + 1 == 3 - (0, 1, 3, 4): 1 + 1 + 3 == 5 - (0, 2, 3, 4): 1 + 1 + 3 == 5 - (1, 2, 3, 4): 1 + 1 + 3 == 5
Constraints:
4 <= nums.length <= 50
1 <= nums[i] <= 100
class Solution:
def countQuadruplets(self, nums: List[int]) -> int:
ans, n = 0, len(nums)
for a in range(n - 3):
for b in range(a + 1, n - 2):
for c in range(b + 1, n - 1):
for d in range(c + 1, n):
if nums[a] + nums[b] + nums[c] == nums[d]:
ans += 1
return ans
class Solution:
def countQuadruplets(self, nums: List[int]) -> int:
ans, n = 0, len(nums)
counter = Counter()
for c in range(n - 2, 1, -1):
counter[nums[c + 1]] += 1
for a in range(c - 1):
for b in range(a + 1, c):
ans += counter[nums[a] + nums[b] + nums[c]]
return ans
class Solution:
def countQuadruplets(self, nums: List[int]) -> int:
ans, n = 0, len(nums)
counter = Counter()
for b in range(n - 3, 0, -1):
c = b + 1
for d in range(c + 1, n):
counter[nums[d] - nums[c]] += 1
for a in range(b):
ans += counter[nums[a] + nums[b]]
return ans
class Solution {
public int countQuadruplets(int[] nums) {
int ans = 0, n = nums.length;
for (int a = 0; a < n - 3; ++a) {
for (int b = a + 1; b < n - 2; ++b) {
for (int c = b + 1; c < n - 1; ++c) {
for (int d = c + 1; d < n; ++d) {
if (nums[a] + nums[b] + nums[c] == nums[d]) {
++ans;
}
}
}
}
}
return ans;
}
}
class Solution {
public int countQuadruplets(int[] nums) {
int ans = 0, n = nums.length;
int[] counter = new int[310];
for (int c = n - 2; c > 1; --c) {
++counter[nums[c + 1]];
for (int a = 0; a < c - 1; ++a) {
for (int b = a + 1; b < c; ++b) {
ans += counter[nums[a] + nums[b] + nums[c]];
}
}
}
return ans;
}
}
class Solution {
public int countQuadruplets(int[] nums) {
int ans = 0, n = nums.length;
int[] counter = new int[310];
for (int b = n - 3; b > 0; --b) {
int c = b + 1;
for (int d = c + 1; d < n; ++d) {
if (nums[d] - nums[c] >= 0) {
++counter[nums[d] - nums[c]];
}
}
for (int a = 0; a < b; ++a) {
ans += counter[nums[a] + nums[b]];
}
}
return ans;
}
}
class Solution {
public:
int countQuadruplets(vector<int>& nums) {
int ans = 0, n = nums.size();
for (int a = 0; a < n - 3; ++a)
for (int b = a + 1; b < n - 2; ++b)
for (int c = b + 1; c < n - 1; ++c)
for (int d = c + 1; d < n; ++d)
if (nums[a] + nums[b] + nums[c] == nums[d]) ++ans;
return ans;
}
};
class Solution {
public:
int countQuadruplets(vector<int>& nums) {
int ans = 0, n = nums.size();
vector<int> counter(310);
for (int c = n - 2; c > 1; --c) {
++counter[nums[c + 1]];
for (int a = 0; a < c - 1; ++a) {
for (int b = a + 1; b < c; ++b) {
ans += counter[nums[a] + nums[b] + nums[c]];
}
}
}
return ans;
}
};
class Solution {
public:
int countQuadruplets(vector<int>& nums) {
int ans = 0, n = nums.size();
vector<int> counter(310);
for (int b = n - 3; b > 0; --b) {
int c = b + 1;
for (int d = c + 1; d < n; ++d) {
if (nums[d] - nums[c] >= 0) {
++counter[nums[d] - nums[c]];
}
}
for (int a = 0; a < b; ++a) {
ans += counter[nums[a] + nums[b]];
}
}
return ans;
}
};
func countQuadruplets(nums []int) int {
ans, n := 0, len(nums)
for a := 0; a < n-3; a++ {
for b := a + 1; b < n-2; b++ {
for c := b + 1; c < n-1; c++ {
for d := c + 1; d < n; d++ {
if nums[a]+nums[b]+nums[c] == nums[d] {
ans++
}
}
}
}
}
return ans
}
func countQuadruplets(nums []int) int {
ans, n := 0, len(nums)
counter := make([]int, 310)
for c := n - 2; c > 1; c-- {
counter[nums[c+1]]++
for a := 0; a < c-1; a++ {
for b := a + 1; b < c; b++ {
ans += counter[nums[a]+nums[b]+nums[c]]
}
}
}
return ans
}
func countQuadruplets(nums []int) int {
ans, n := 0, len(nums)
counter := make([]int, 310)
for b := n - 3; b > 0; b-- {
c := b + 1
for d := c + 1; d < n; d++ {
if nums[d] >= nums[c] {
counter[nums[d]-nums[c]]++
}
}
for a := 0; a < b; a++ {
ans += counter[nums[a]+nums[b]]
}
}
return ans
}