You are given an integer array nums
. We call a subset of nums
good if its product can be represented as a product of one or more distinct prime numbers.
- For example, if
nums = [1, 2, 3, 4]
:[2, 3]
,[1, 2, 3]
, and[1, 3]
are good subsets with products6 = 2*3
,6 = 2*3
, and3 = 3
respectively.[1, 4]
and[4]
are not good subsets with products4 = 2*2
and4 = 2*2
respectively.
Return the number of different good subsets in nums
modulo 109 + 7
.
A subset of nums
is any array that can be obtained by deleting some (possibly none or all) elements from nums
. Two subsets are different if and only if the chosen indices to delete are different.
Example 1:
Input: nums = [1,2,3,4] Output: 6 Explanation: The good subsets are: - [1,2]: product is 2, which is the product of distinct prime 2. - [1,2,3]: product is 6, which is the product of distinct primes 2 and 3. - [1,3]: product is 3, which is the product of distinct prime 3. - [2]: product is 2, which is the product of distinct prime 2. - [2,3]: product is 6, which is the product of distinct primes 2 and 3. - [3]: product is 3, which is the product of distinct prime 3.
Example 2:
Input: nums = [4,2,3,15] Output: 5 Explanation: The good subsets are: - [2]: product is 2, which is the product of distinct prime 2. - [2,3]: product is 6, which is the product of distinct primes 2 and 3. - [2,15]: product is 30, which is the product of distinct primes 2, 3, and 5. - [3]: product is 3, which is the product of distinct prime 3. - [15]: product is 15, which is the product of distinct primes 3 and 5.
Constraints:
1 <= nums.length <= 105
1 <= nums[i] <= 30
class Solution:
def numberOfGoodSubsets(self, nums: List[int]) -> int:
primes = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29]
cnt = Counter(nums)
mod = 10**9 + 7
n = len(primes)
f = [0] * (1 << n)
f[0] = pow(2, cnt[1])
for x in range(2, 31):
if cnt[x] == 0 or x % 4 == 0 or x % 9 == 0 or x % 25 == 0:
continue
mask = 0
for i, p in enumerate(primes):
if x % p == 0:
mask |= 1 << i
for state in range((1 << n) - 1, 0, -1):
if state & mask == mask:
f[state] = (f[state] + cnt[x] * f[state ^ mask]) % mod
return sum(f[i] for i in range(1, 1 << n)) % mod
class Solution {
public int numberOfGoodSubsets(int[] nums) {
int[] primes = {2, 3, 5, 7, 11, 13, 17, 19, 23, 29};
int[] cnt = new int[31];
for (int x : nums) {
++cnt[x];
}
final int mod = (int) 1e9 + 7;
int n = primes.length;
long[] f = new long[1 << n];
f[0] = 1;
for (int i = 0; i < cnt[1]; ++i) {
f[0] = (f[0] * 2) % mod;
}
for (int x = 2; x < 31; ++x) {
if (cnt[x] == 0 || x % 4 == 0 || x % 9 == 0 || x % 25 == 0) {
continue;
}
int mask = 0;
for (int i = 0; i < n; ++i) {
if (x % primes[i] == 0) {
mask |= 1 << i;
}
}
for (int state = (1 << n) - 1; state > 0; --state) {
if ((state & mask) == mask) {
f[state] = (f[state] + cnt[x] * f[state ^ mask]) % mod;
}
}
}
long ans = 0;
for (int i = 1; i < 1 << n; ++i) {
ans = (ans + f[i]) % mod;
}
return (int) ans;
}
}
class Solution {
public:
int numberOfGoodSubsets(vector<int>& nums) {
int primes[10] = {2, 3, 5, 7, 11, 13, 17, 19, 23, 29};
int cnt[31]{};
for (int& x : nums) {
++cnt[x];
}
int n = 10;
const int mod = 1e9 + 7;
vector<long long> f(1 << n);
f[0] = 1;
for (int i = 0; i < cnt[1]; ++i) {
f[0] = f[0] * 2 % mod;
}
for (int x = 2; x < 31; ++x) {
if (cnt[x] == 0 || x % 4 == 0 || x % 9 == 0 || x % 25 == 0) {
continue;
}
int mask = 0;
for (int i = 0; i < n; ++i) {
if (x % primes[i] == 0) {
mask |= 1 << i;
}
}
for (int state = (1 << n) - 1; state; --state) {
if ((state & mask) == mask) {
f[state] = (f[state] + 1LL * cnt[x] * f[state ^ mask]) % mod;
}
}
}
long long ans = 0;
for (int i = 1; i < 1 << n; ++i) {
ans = (ans + f[i]) % mod;
}
return ans;
}
};
func numberOfGoodSubsets(nums []int) (ans int) {
primes := []int{2, 3, 5, 7, 11, 13, 17, 19, 23, 29}
cnt := [31]int{}
for _, x := range nums {
cnt[x]++
}
const mod int = 1e9 + 7
n := 10
f := make([]int, 1<<n)
f[0] = 1
for i := 0; i < cnt[1]; i++ {
f[0] = f[0] * 2 % mod
}
for x := 2; x < 31; x++ {
if cnt[x] == 0 || x%4 == 0 || x%9 == 0 || x%25 == 0 {
continue
}
mask := 0
for i, p := range primes {
if x%p == 0 {
mask |= 1 << i
}
}
for state := 1<<n - 1; state > 0; state-- {
if state&mask == mask {
f[state] = (f[state] + f[state^mask]*cnt[x]) % mod
}
}
}
for i := 1; i < 1<<n; i++ {
ans = (ans + f[i]) % mod
}
return
}